scholarly journals The cell-permeable mitochondrial calcium uniporter inhibitor Ru265 preserves cortical neuron respiration after lethal oxygen glucose deprivation and reduces hypoxic/ischemic brain injury

2020 ◽  
Vol 40 (6) ◽  
pp. 1172-1181 ◽  
Author(s):  
Robyn J Novorolsky ◽  
Matthew Nichols ◽  
Jong S Kim ◽  
Evgeny V Pavlov ◽  
Joshua J Woods ◽  
...  

The mitochondrial calcium (Ca2+) uniporter (MCU) mediates high-capacity mitochondrial Ca2+ uptake implicated in ischemic/reperfusion cell death. We have recently shown that inducible MCU ablation in Thy1-expressing neurons renders mice resistant to sensorimotor deficits and forebrain neuron loss in a model of hypoxic/ischemic (HI) brain injury. These findings encouraged us to compare the neuroprotective effects of Ru360 and the recently identified cell permeable MCU inhibitor Ru265. Unlike Ru360, Ru265 (2–10 µM) reached intracellular concentrations in cultured cortical neurons that preserved cell viability, blocked the protease activity of Ca2+-dependent calpains and maintained mitochondrial respiration and glycolysis after a lethal period of oxygen–glucose deprivation (OGD). Intraperitoneal (i.p.) injection of adult male C57Bl/6 mice with Ru265 (3 mg/kg) also suppressed HI-induced sensorimotor deficits and brain injury. However, higher doses of Ru265 (10 and 30 mg/kg, i.p.) produced dose-dependent increases in the frequency and duration of seizure-like behaviours. Ru265 is proposed to promote convulsions by reducing Ca2+ buffering and energy production in highly energetic interneurons that suppress brain seizure activity. These findings support the therapeutic potential of MCU inhibition in the treatment of ischemic stroke but also indicate that such clinical translation will require drug delivery strategies which mitigate the pro-convulsant effects of Ru265.

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiao-Ya Gao ◽  
Jian-Ou Huang ◽  
Ya-Fang Hu ◽  
Yong Gu ◽  
Shu-Zhen Zhu ◽  
...  

Abstract Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury.


Author(s):  
Tao Chen ◽  
Li-Kun Yang ◽  
Jie Zhu ◽  
Chun-Hua Hang ◽  
Yu-Hai Wang

Background: Perampanel is a highly selective and non-competitive α-amino-3-hydroxy-5 -methyl-4-isoxazole propionate (AMPA) receptor (AMPAR) antagonist, which has been licensed as an orally administered antiepileptic drug in more than 55 countries. Recently, perampanel was found to exert neuroprotective effects in hemorrhagic and ischemic stroke models. Objective: In this study, the protective effect of perampanel was investigated. Method: The protective effect of perampanel was investigated in an in vitro traumatic neuronal injury (TNI) model in primary cultured cortical neurons. Conclusion: Our present data suggest that necroptosis plays a key role in the pathogenesis of neuronal death after TNI, and that perampanel might have therapeutic potential for patients with traumatic brain injury (TBI).


2021 ◽  
Vol 23 (3) ◽  
pp. 420-436
Author(s):  
Hyuk Sung Kwon ◽  
Ye Eun Kim ◽  
Hyun-Hee Park ◽  
Jeong-Woo Son ◽  
Hojin Choi ◽  
...  

Background and Purpose Previous studies have revealed the diverse neuroprotective effects of GV1001. In this study, we investigated the effects of GV1001 on focal cerebral ischemia-reperfusion injury (IRI) in rats and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in neural stem cells (NSCs) and cortical neurons. Methods Focal cerebral IRI was induced by transient middle cerebral artery occlusion (MCAO). Brain diffusion-weighted imaging (DWI) was performed 2 hours after occlusion, and a total of 37 rats were treated by reperfusion with GV1001 or saline 2 hours after occlusion. Fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging, immunohistochemistry, and neurobehavioral function analyses were performed. Additionally, OGD/R-injured NSCs and cortical neurons were treated with different GV1001 concentrations. Cell viability, proliferation, migration, and oxidative stress were determined by diverse molecular analyses. Results In the stroke model, GV1001 protected neural cells against IRI. The most effective dose of GV1001 was 60 μM/kg. The infarct volume on FLAIR 48 hours after MCAO compared to lesion volume on DWI showed a significantly smaller ratio in the GV1001-treated group. GV1001-treated rats exhibited better behavioral functions than the saline-treated rats. Treatment with GV1001 increased the viability, proliferation, and migration of the OGD/R-injured NSCs. Free radicals were significantly restored by treatment with GV1001. These neuroprotective effects of GV1001 have also been demonstrated in OGD/R-injured cortical neurons. Conclusions The results suggest that GV1001 has neuroprotective effects against IRI in NSCs, cortical neurons, and the rat brain. These effects are mediated through the induction of cellular proliferation, mitochondrial stabilization, and anti-apoptotic, anti-aging, and antioxidant effects.


2001 ◽  
Vol 21 (6) ◽  
pp. 631-634 ◽  
Author(s):  
Nobuo Nagai ◽  
Seiji Yamamoto ◽  
Takashi Tsuboi ◽  
Hayato Ihara ◽  
Tetsumei Urano ◽  
...  

Effect of tissue-type plasminogen activator (tPA) on oxygen–glucose deprivation (OGD) was studied in cultured cortical neurons prepared from tPA gene knockout (tPA-KO) and wild-type (Wt) mice. Three hours of OGD induced 45% and 23% of neuronal death in Wt and tPA-KO mice, respectively. Neuronal death in tPA-KO mice was increased to 42% by additional tPA. Six hours of OGD induced 80% and 40% of neuronal death in Wt and tPA-KO mice, respectively, whereas the addition of tPA increased to 62% in tPA-KO mice. These results suggest that tPA is directly involved in the process of neuronal death induced by ischemia-mimic stress without involving vascular or circulatory components.


2017 ◽  
Vol 243 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Tian Tian ◽  
Junan Zeng ◽  
Guangyu Zhao ◽  
Wenjing Zhao ◽  
Songyi Gao ◽  
...  

Orientin (luteolin-8-C-glucoside) is a phenolic compound found abundantly in millet, juice, and peel of passion fruit and has been shown to have antioxidant properties. In the present study, we explored the effects of orientin on oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury in primary culture of rat cortical neurons using an in vitro model of neonatal ischemic brain injury. The reduced cell viability and elevated lactate dehydrogenase leakage were observed after OGD/RP exposure, which were then reversed by orientin (10, 20, and 30 µM) pretreatment in a dose-dependent manner. Additionally, OGD/RP treatment resulted in significant oxidative stress, accompanied by enhanced intracellular reactive oxygen species (ROS) generation, and obvious depletion in the activities of intracellular Mn-superoxide dismutase, catalase, and glutathione peroxidase antioxidases. However, these effects were dose dependently restored by orientin pretreatment. We also found that orientin pretreatment dose dependently suppressed [Ca2+]i increase and mitochondrial membrane potential dissipation caused by OGD/RP in primary culture of rat cortical neurons. Western blot analysis showed that OGD/RP exposure induced a distinct decrease of Bcl-2 protein and a marked elevation of Bax, caspase-3, and cleaved caspase-3 proteins; whereas these effects were dose dependently reversed by orientin incubation. Both the caspase-3 activity and the apoptosis rate were increased under OGD/RP treatment, but was then dose dependently down-regulated by orientin (10, 20, and 30 µM) incubation. Moreover, orientin pretreatment dose dependently inhibited OGD/RP-induced phosphorylation of JNK and ERK1/2. Notably, JNK inhibitor SP600125 and ERK1/2 inhibitor PD98059 also dramatically attenuated OGD/RP-induced cell viability loss and ROS generation, and further, orientin failed to protect cortical neurons with the interference of JNK activator anisomycin or ERK1/2 activator FGF-2. Taken together, these results demonstrated that orientin has significant neuroprotective effects against OGD/RP-induced cell injury via JNK and ERK1/2 signaling pathways in primary culture of rat cortical neurons. Impact statement Orientin has been used in traditional eastern medicine and reported to possess antioxidant properties. However, the effects of orientin on neonatal ischemic brain injury and the underlying mechanisms involved have not been studied. Our results showed that orientin exerts significant neuroprotective effects on cell injury caused by oxygen-glucose deprivation/reperfusion via the JNK and ERK1/2 signaling pathways in primary culture of rat cortical neurons, implying the potential therapeutic application of orientin via the suppression of oxidative stress and cell apoptosis. This research suggested that orientin may be used as a therapeutic and preventive option for newborn cerebral ischemia/reperfusion injury.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 477-485 ◽  
Author(s):  
Xianfang Meng ◽  
Guangpin Chu ◽  
Zhihua Yang ◽  
Ping Qiu ◽  
Yue Hu ◽  
...  

Background/Aims: Metformin, the common medication for type II diabetes, has protective effects on cerebral ischemia. However, the molecular mechanisms are far from clear. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of the anaphase-promoting complex (APC), is widely expressed in hippocampal and cortical neurons and plays an important role in mediating high glucose-induced neurotoxicity. The present study investigated whether metformin modifies the expression of MAD2B and to exert its neuroprotective effects in primary cultured cortical neurons during oxygen-glucose deprivation/reoxygenation (OGD/R), a widely used in vitro model of ischemia/reperfusion. Methods: Primary cortical neurons were cultured, deprived of oxygen-glucose for 1 h, and then recovered with oxygen-glucose for 12 h and 24 h. Cell viability was measured by detecting the levels of lactate dehydrogenase (LDH) in culture medium. The levels of MAD2B, cyclin B and p-histone 3 were measured by Western blot. Results: Cell viability of neurons was reduced under oxygen-glucose deprivation/reoxygenation (OGD/R). The expression of MAD2B was increased under OGD/R. The levels of cyclin B1, which is a substrate of APC, were also increased. Moreover, OGD/R up-regulated the phosphorylation levels of histone 3, which is the induction of aberrant re-entry of post-mitotic neurons. However, pretreatment of neurons with metformin alleviated OGD/R-induced injury. Metformin further decreased the expression of MAD2B, cyclin B1 and phosphorylation levels of histone 3. Conclusion: Metformin exerts its neuroprotective effect through regulating the expression of MAD2B in neurons under OGD/R.


2017 ◽  
Vol 5 (1) ◽  
pp. 10-17
Author(s):  
Noorolhoda Fotovat Eskandari ◽  
Gelareh Vahabzadeh ◽  
Fereshteh Golab ◽  
Fariba Karimzadeh ◽  
Parvaneh Rahimi-Moghadam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document