Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations

2020 ◽  
pp. 027836492092747 ◽  
Author(s):  
Emanuele Vignali ◽  
Emanuele Gasparotti ◽  
Katia Capellini ◽  
Benigno Marco Fanni ◽  
Luigi Landini ◽  
...  

Cardiovascular diseases are the leading cause of death in the western countries. Robotic surgery recently emerged as a confirmed strategy in the cardiovascular field, especially thanks to the improvement of soft robotics. These techniques have demonstrated their potential in terms of speed of execution and precision. In this context, a deeper knowledge of the material properties of the blood vessels is required, especially for computational soft robotics applications. A constitutive model including the contribution of the collagen fibers families is needed to take hyperelasticity and anisotropy into account. For this purpose, four different models are presented: two fiber families with dispersion (2FFD), two fiber families without dispersion (2FF), four fiber families with dispersion (4FFD), and four fiber families without dispersion (4FF). A set of experimental biaxial data obtained from ex-vivo specimens was used to assess the model performances. Two fitting procedures were imposed: a procedure with no weighting of scores and a procedure with a weight set to enhance the model performances in the contact range. A finite element simulation of a contact procedure was developed to evaluate the effect on the contact pressures and forces according to the different model implementations. In particular, a minimally invasive aortic valve positioning process through a previously designed soft robot was simulated. The results confirmed the overall fitting procedure. The adoption of the weighting process for the fitting was successful, as it permitted an accurate prediction in the region of interest through models with less parameters.

2017 ◽  
Vol 3 (2) ◽  
pp. 711-715
Author(s):  
Michael de Wild ◽  
Simon Zimmermann ◽  
Marcel Obrecht ◽  
Michel Dard

AbstractThin mechanically stable Ti-cages have been developed for the in-vivo application as X-ray and histology markers for the optimized evaluation of pre-clinical performance of bone graft materials. A metallic frame defines the region of interest during histological investigations and supports the identification of the defect site. This standardization of the procedure enhances the quality of pre-clinical experiments. Different models of thin metallic frameworks were designed and produced out of titanium by additive manufacturing (Selective Laser Melting). The productibility, the mechanical stability, the handling and suitability of several frame geometries were tested during surgery in artificial and in ex-vivo bone before a series of cages was preclinically investigated in the female Göttingen minipigs model. With our novel approach, a flexible process was established that can be adapted to the requirements of any specific animal model and bone graft testing.


2008 ◽  
Vol 607 ◽  
pp. 64-66
Author(s):  
Nicolas Laforest ◽  
Jérémie De Baerdemaeker ◽  
Corine Bas ◽  
Charles Dauwe

Positron annihilation lifetime measurements on polymethylmethacrylate (PMMA) at low temperature were performed. Different discrete fitting procedures have been used to analyze the experimental data. It shows that the extracted parameters depend strongly on the fitting procedure. The physical meaning of the results is discussed. The blob model seems to give the best annihilation parameters.


Robotica ◽  
2021 ◽  
pp. 1-31
Author(s):  
Andrew Spielberg ◽  
Tao Du ◽  
Yuanming Hu ◽  
Daniela Rus ◽  
Wojciech Matusik

Abstract We present extensions to ChainQueen, an open source, fully differentiable material point method simulator for soft robotics. Previous work established ChainQueen as a powerful tool for inference, control, and co-design for soft robotics. We detail enhancements to ChainQueen, allowing for more efficient simulation and optimization and expressive co-optimization over material properties and geometric parameters. We package our simulator extensions in an easy-to-use, modular application programming interface (API) with predefined observation models, controllers, actuators, optimizers, and geometric processing tools, making it simple to prototype complex experiments in 50 lines or fewer. We demonstrate the power of our simulator extensions in over nine simulated experiments.


2002 ◽  
Vol 124 (3) ◽  
pp. 734-744 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


2016 ◽  
Vol 4 (11) ◽  
pp. 1902-1902 ◽  
Author(s):  
Mikołaj Rogóż ◽  
Hao Zeng ◽  
Chen Xuan ◽  
Diederik Sybolt Wiersma ◽  
Piotr Wasylczyk

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
D. Dane Quinn ◽  
Adam R. Brink

Abstract The development of reduced-order models remains an active research area, despite advances in computational resources. The present work develops a novel order-reduction approach that is designed to incorporate isolated regions that contain, for example, nonlinearitites or accumulating damage. The approach is designed to use global modes of the overall system response, which are then naturally coupled to the response in the isolated region of interest. Two examples are provided to demonstrate both the accuracy and the computational efficiency of the proposed approach. The performance of this approach is compared to the exact response corresponding to a finite element simulation for the chosen problems. In addition, the accuracy and computational efficiency are shown relative to a standard Galerkin reduction based on the linear normal modes. It is found that the proposed reduction offer computational efficiency comparable to a Galerkin reduction, but more accurately represents the response of the system when both are compared to the finite element simulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aurélien Patoz ◽  
Nicola Pedrani ◽  
Romain Spicher ◽  
André Berchtold ◽  
Fabio Borrani ◽  
...  

An accurate estimation of critical speed (CS) is important to accurately define the boundary between heavy and severe intensity domains when prescribing exercise. Hence, our aim was to compare CS estimates obtained by statistically appropriate fitting procedures, i.e., regression analyses that correctly consider the dependent variables of the underlying models. A second aim was to determine the correlations between estimated CS and aerobic fitness parameters, i.e., ventilatory threshold, respiratory compensation point, and maximal rate of oxygen uptake. Sixteen male runners performed a maximal incremental aerobic test and four exhaustive runs at 90, 100, 110, and 120% of the peak speed of the incremental test on a treadmill. Then, two mathematically equivalent formulations (time as function of running speed and distance as function of running speed) of three different mathematical models (two-parameter, three-parameter, and three-parameter exponential) were employed to estimate CS, the distance that can be run above CS (d′), and if applicable, the maximal instantaneous running speed (smax). A significant effect of the mathematical model was observed when estimating CS, d′, and smax (P < 0.001), but there was no effect of the fitting procedure (P > 0.77). The three-parameter model had the best fit quality (smallest Akaike information criterion) of the CS estimates but the highest 90% confidence intervals and combined standard error of estimates (%SEE). The 90% CI and %SEE were similar when comparing the two fitting procedures for a given model. High and very high correlations were obtained between CS and aerobic fitness parameters for the three different models (r ≥ 0.77) as well as reasonably small SEE (SEE ≤ 6.8%). However, our results showed no further support for selecting the best mathematical model to estimate critical speed. Nonetheless, we suggest coaches choosing a mathematical model beforehand to define intensity domains and maintaining it over the running seasons.


2017 ◽  
Vol 14 (130) ◽  
pp. 20170101 ◽  
Author(s):  
M. Calisti ◽  
G. Picardi ◽  
C. Laschi

Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics.


2000 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

Abstract The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


Sign in / Sign up

Export Citation Format

Share Document