scholarly journals Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis

2018 ◽  
Vol 60 (3) ◽  
pp. 356-366 ◽  
Author(s):  
Karoline Skogen ◽  
Anselm Schulz ◽  
Eirik Helseth ◽  
Balaji Ganeshan ◽  
Johann Baptist Dormagen ◽  
...  

Background Texture analysis has been done on several radiological modalities to stage, differentiate, and predict prognosis in many oncologic tumors. Purpose To determine the diagnostic accuracy of discriminating glioblastoma (GBM) from single brain metastasis (MET) by assessing the heterogeneity of both the solid tumor and the peritumoral edema with magnetic resonance imaging (MRI) texture analysis (MRTA). Material and Methods Preoperative MRI examinations done on a 3-T scanner of 43 patients were included: 22 GBM and 21 MET. MRTA was performed on diffusion tensor imaging (DTI) in a representative region of interest (ROI). The MRTA was assessed using a commercially available research software program (TexRAD) which applies a filtration histogram technique for characterizing tumor and peritumoral heterogeneity. The filtration step selectively filters and extracts texture features at different anatomical scales varying from 2 mm (fine) to 6 mm (coarse). Heterogeneity quantification was obtained by the statistical parameter entropy. A threshold value to differentiate GBM from MET with sensitivity and specificity was calculated by receiver operating characteristic (ROC) analysis. Results Quantifying the heterogeneity of the solid part of the tumor showed no significant difference between GBM and MET. However, the heterogeneity of the GBMs peritumoral edema was significantly higher than the edema surrounding MET, differentiating them with a sensitivity of 80% and specificity of 90%. Conclusion Assessing the peritumoral heterogeneity can increase the radiological diagnostic accuracy when discriminating GBM and MET. This will facilitate the medical staging and optimize the planning for surgical resection of the tumor and postoperative management.

2019 ◽  
Vol 30 (4) ◽  
pp. 739-747
Author(s):  
Edyta Maj ◽  
Barbara Szemplińska ◽  
Wojciech Szeszkowski ◽  
Marek Prokopienko ◽  
Andrzej Cieszanowski ◽  
...  

Abstract Background and Purpose Recent attempts to utilize diffusion tensor imaging (DTI) to identify the extent of microinfiltration of a tumor in the brain have been successful. It was therefore speculated that this technique could also be useful in the spinal cord. The aim of this study was to differentiate between infiltrating and noninfiltrating intramedullary spinal tumors using DTI-derived metrics. Material and Methods The study group consisted of 6 patients with infiltrating and 12 with noninfiltrating spinal cord tumors. Conventional magnetic resonance imaging (MRI) with gadolinium administration was performed followed by DTI. Fractional anisotropy (FA), diffusivity (TRACE) and apparent diffusion coefficient (ADC) were measured in the enhancing tumor mass, peritumoral margins, peritumoral edema and normal appearing spinal cord. The results were compared using non-parametric Mann–Whitney U test with statistical significance p < 0.05. Results In peritumoral margins the FA values were significantly higher in the noninfiltrating compared to the infiltrating tumors (p < 0.007), whereas TRACE values were significantly lower (p < 0.017). The results were similar in peritumoral edema. The FA values in the tumor mass showed no significant differences between the two groups while TRACE showed a statistically significant difference (p < 0.003). There was no statistical difference in any parameters in normal appearing spinal cord. Conclusion Quantitative analysis of DTI parameters of spinal cord tissue surroundings spinal masses can be useful for differentiation between infiltrating and non-infiltrating intramedullary spinal tumors.


2020 ◽  
pp. 197140092098031
Author(s):  
Pranjal Phukan ◽  
Kalyan Sarma ◽  
Aman Yusuf Khan ◽  
Bhupen Barman ◽  
Md Jamil ◽  
...  

Background and purpose Magnetic resonance imaging (MRI) of the brain in scrub typhus meningoencephalitis is non-specific, and in the majority of the cases, conventional MRI fails to detect any abnormality. However, autopsy reports depict central nervous system involvement in almost all patients. There is therefore a need for research on the quantitative assessment of brain parenchyma that can detect microstructural abnormalities. The study aimed to assess the microstructural integrity changes of scrub typhus meningoencephalitis by using different diffusion tensor imaging (DTI) parameters. Methods This was a retrospective analysis of scrub typhus meningoencephalitis. Seven patients and seven age- and sex-matched healthy controls were included. Different DTI parameters such as apparent diffusion coefficient (ADC), fractional anisotropy (FA), relative anisotropy (RA), trace, volume ratio (VR) and geodesic anisotropy (GA) were obtained from six different regions of subcortical white matter at the level of the centrum semiovale. Intergroup significant difference was determined by one-way analysis of variance followed by Tukey’s post hoc test. Receiver operating characteristic curves were constructed to determine the accuracy of the DTI matrices. Results There was a significant decrease in FA, RA and GA as well as an increase in ADC and VR in the subcortical white matter in patients with scrub typhus meningoencephalitis compared to controls ( p < 0.001). The maximum sensitivity of the DTI parameters was 85.7%, and the maximum specificity was 81%. Conclusion There was an alteration of subcortical white-matter integrity in scrub typhus meningoencephalitis that represents the axonal degeneration, myelin breakdown and neuronal degeneration. DTI may be a useful tool to detect white-matter abnormalities in scrub typhus meningoencephalitis in clinical practice, particularly in patients with negative conventional MRI.


2007 ◽  
Vol 293 (4) ◽  
pp. H2377-H2384 ◽  
Author(s):  
Yi Jiang ◽  
Julius M. Guccione ◽  
Mark B. Ratcliffe ◽  
Edward W. Hsu

The orientation of MRI-measured diffusion tensor in the myocardium has been directly correlated to the tissue fiber direction and widely characterized. However, the scalar anisotropy indexes have mostly been assumed to be uniform throughout the myocardial wall. The present study examines the fractional anisotropy (FA) as a function of transmural depth and circumferential and longitudinal locations in the normal sheep cardiac left ventricle. Results indicate that FA remains relatively constant from the epicardium to the midwall and then decreases (25.7%) steadily toward the endocardium. The decrease of FA corresponds to 7.9% and 12.9% increases in the secondary and tertiary diffusion tensor diffusivities, respectively. The transmural location of the FA transition coincides with the location where myocardial fibers run exactly circumferentially. There is also a significant difference in the midwall-endocardium FA slope between the septum and the posterior or lateral left ventricular free wall. These findings are consistent with the cellular microstructure from histological studies of the myocardium and suggest a role for MR diffusion tensor imaging in characterization of not only fiber orientation but, also, other tissue parameters, such as the extracellular volume fraction.


Neurosurgery ◽  
2008 ◽  
Vol 63 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Wai Hoe Ng ◽  
Dennis Lai-Hong Cheong ◽  
Kathleen Joy Khu ◽  
Govidasamy Venkatesh ◽  
Yee Kong Ng ◽  
...  

ABSTRACT OBJECTIVE Benign extracerebral lesions such as meningiomas may cause hemiparesis by compression and deviation without infiltrating the white matter. We used magnetic resonance diffusion tensor imaging and diffusion tensor tractography to investigate the effects of benign extracerebral lesions on the corticospinal tract (CST). METHODS Thirteen patients with extracerebral lesions (11 benign meningiomas and 2 benign cysts) underwent magnetic resonance diffusion tensor imaging and diffusion tensor tractography of the CST using fiber assignment by continuous tractography. The CST was reconstructed and assessed by comparing the ipsilateral and unaffected contralateral fibers. The tumor volume, relative fractional anisotropy, fiber deviation, relative fiber number, and relative fiber per voxel were compared between patients without and with temporary presurgical hemiparesis. RESULTS Seven patients without hemiparesis and five patients with temporary hemiparesis were analyzed; one patient had permanent weakness and was excluded from analysis. There was no significant difference in the tumor volume, relative fractional anisotropy, presence of cerebral edema, or CST deviation between groups. In patients with temporary hemiparesis, the median relative fiber number (mean, 0.35 ± 0.32) and relative fiber per voxel (mean, 0.49 ± 0.14) were significantly reduced compared with patients without hemiparesis (0.92 ± 0.55, P = 0.04; and 0.96 ± 0.28, P &lt; 0.01, respectively). CONCLUSION In patients with benign extracerebral lesions, reduction in fiber number and fiber per voxel, but not fiber deviation, correlated with temporary hemiparesis. Clinical recovery was possible even if the CST fibers detected by diffusion tensor tractography were reduced by benign extracerebral lesions.


Neurosurgery ◽  
2013 ◽  
Vol 73 (6) ◽  
pp. 1044-1053 ◽  
Author(s):  
Hongliang Zhang ◽  
Yong Wang ◽  
Tao Lu ◽  
Bo Qiu ◽  
Yanqing Tang ◽  
...  

Abstract BACKGROUND: Diffusion tensor imaging (DTI) tractography enables the in vivo visualization of white matter tracts inside normal brain tissue, which provides the neurosurgeon important information to plan tumor resections. However, DTI is associated with restrictions in the resolution of crossing fibers in the vicinity of the tumor or in edema. We find that generalized q-sampling imaging (GQI) can overcome these difficulties and is advantageous over DTI for the tractography of the fiber bundle in peritumoral edema. OBJECTIVE: To demonstrate the differences between GQI and DTI in the preoperative mapping of fiber tractography in peritumoral edema of cerebral tumors, and discuss the clinical application of GQI in neurosurgical planning. METHODS: Five patients with brain tumors underwent 3-T magnetic resonance imaging scans, and the data were reconstructed by DTI and GQI. We adjusted the parameters and compared the differences between DTI and GQI in visualizing the fiber tracts in the peritumoral edema of cerebral tumors. RESULTS: GQI and DTI showed substantial differences in displaying the nerve fibers in the edema surrounding the tumor. The GQI tractography method could fully display existing intact fibers in the edema, whereas the fiber tracts in edema displayed by DTI tractography were incomplete, missing, or ruptured. CONCLUSION: GQI can visualize the tracts in the peritumoral edema of cerebral tumors better than DTI. Although GQI has many limitations, its future in the preoperative guidance of brain tumor lesions is promising.


2009 ◽  
Vol 110 (4) ◽  
pp. 730-736 ◽  
Author(s):  
Heon Yoo ◽  
Young Zoon Kim ◽  
Byung Ho Nam ◽  
Sang Hoon Shin ◽  
Hee Seok Yang ◽  
...  

Object The goal of this study was to evaluate the therapeutic impact of the resection of metastatic brain tumor cells infiltrating adjacent brain parenchyma. Methods Between July 2001 and February 2007, 94 patients (67 males and 27 females, with a mean age of 55.0 ±12.0 years) underwent resection of a single brain metastasis, followed by systemic chemotherapy with or without radiotherapy. In 43 patients with tumors located in noneloquent areas, the authors performed microscopic total resections (MTRs) that included tumor cells infiltrating adjacent brain parenchyma, and they pathologically confirmed during surgery that the resection margins were free of tumor cells (MTR group). In 51 patients with lesions in eloquent locations, gross-total resections (GTRs) were performed without the removal of neighboring brain parenchyma (GTR group). The 2 groups were then compared for local recurrence and survival. Results The MTR group had better local control of the tumor than did the GTR group; 10 (23.3%) of 43 patients in the MTR group and 22 (43.1%) of 51 patients in the GTR group had a local recurrence (p = 0.04). The median time to tumor progression in the MTR group could not be calculated using the Kaplan-Meier method, whereas it was 11.4 months in the GTR group. The 1- and 2-year respective local recurrence rates were 29.1 and 29.1% in the MTR group and 58.6 and 63.2% in the GTR group (p = 0.01). Multivariate analysis showed that the MTR procedure was associated with a decreased risk of local recurrence (p = 0.003). A Cox regression analysis revealed that the hazard ratio for a local recurrence in the MTR group versus the GTR group was 3.14 (95% CI 1.47–6.72, p = 0.003). There was no significant difference in the local recurrence rate between the MTR group without radiotherapy (10 [30.3%] of 33) and the GTR group with postoperative radiotherapy (5 [26.3%] of 19). Conclusions The results in this study suggest that MTRs including tumor cells infiltrating adjacent brain parenchyma for a single brain metastasis provide better local tumor control.


2012 ◽  
Vol 17 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Masaya Nakamura ◽  
Kanehiro Fujiyoshi ◽  
Osahiko Tsuji ◽  
Tsunehiko Konomi ◽  
Naobumi Hosogane ◽  
...  

Object This study was conducted to determine whether postoperative changes in the fractional anisotropy (FA) value and diffusion tensor imaging of the cervical spinal cord can predict functional outcome for patients with cervical compressive myelopathy (CCM). Methods Twenty patients with CCM were treated by laminoplasty from 2008 to 2009. Both T2-weighted MRI and diffusion tensor imaging were performed before and after surgery. The FA values were analyzed and fiber tracking was performed. The fiber tract (FT) ratio was calculated according to the following formula: (number of fibers at the compressed level)/(number of fibers at the C-2 level) × 100%. The Japanese Orthopaedic Association scoring system for cervical myelopathy was used to determine pre- and postoperative neurological status of the patients, and the Hirabayashi method was used to calculate the recovery rate. Results There was no significant difference in recovery rates between patients with and those without intramedullary high signal intensity on preoperative T2-weighted images. Substantial differences in FA value among spinal cord, bone, and CSF made it difficult to obtain a precise FA value for the compressed spinal cord. There was a significant correlation between the preoperative FT ratio and the recovery rate (p = 0.0006). A poor outcome (recovery rate < 40%) could be anticipated for CCM patients with preoperative FT ratios below 60%. Conclusions The preoperative FT ratio correlated significantly with the recovery rates in CCM patients. Preoperative diffusion tensor tractography can be a new prognostic predictor for neurological recovery in CCM patients after laminoplasty.


2021 ◽  
Vol 79 (6) ◽  
pp. 483-488
Author(s):  
Aygul Tantik Pak ◽  
Sebahat Nacar Dogan ◽  
Yildizhan Sengul

Abstract Background: Migraine is a prevalent neurological disease that leads to severe headaches. Moreover, it is the commonest among the primary headaches that cause medication overuse headache (MOH). The orbitofrontal cortex (OFC) is one of the structures most associated with medication overuse. Objective: To determine microstructural changes in the OFC among migraine patients who developed MOH, through the diffusion tensor imaging (DTI) technique. Methods: Fifty-eight patients who had been diagnosed with migraine based on the Classification of Headache Disorders (ICHD-III-B) were included in the study. Patients were sub-classified into two groups, with and without MOH, based on the MOH criteria of ICHD-III-B. DTI was applied to each patient. The OFC fractional anisotropy (FA), and apparent diffusion coefficient (ADC) values of the two groups were compared. Results: The mean age of all the patients was 35.98±7.92 years (range: 18-65), and 84.5% (n=49) of them were female. The two groups, with MOH (n=25) and without (n=33), were alike in terms of age, gender, family history, migraine with or without aura and duration of illness. It was found that there was a significant difference in FA values of the left OFC between the two groups (0.32±0.01 versus 0.29±0.01; p=0.04). Conclusions: An association was found between MOH and changes to OFC microstructure. Determination of neuropathology and factors associated with medication overuse among migraine patients is crucial in terms of identifying the at-risk patient population and improving proper treatment strategies specific to these patients.


Sign in / Sign up

Export Citation Format

Share Document