scholarly journals Characteristics of resveratrol and serotonin on antioxidant capacity and susceptibility to oxidation of red blood cells in stored human blood in a time-dependent manner

2017 ◽  
Vol 46 (1) ◽  
pp. 272-283 ◽  
Author(s):  
Zübeyir Huyut ◽  
Mehmet Ramazan Şekeroğlu ◽  
Ragıp Balahoroğlu ◽  
Mehmet Tahir Huyut

Objective In stored red blood cells (RBCs), which are used in diseases (e.g., acute blood loss and leukaemia), storage lesions arise by oxidative stress and other factors over time. This study investigated the protective effects of resveratrol and serotonin on stored RBCs. Methods Blood from each donor (n = 10) was placed in different bags containing 70 mL of citrate phosphate dextrose (total volume: 500 mL) and divided into three groups (n = 30): control, 60 µg/mL resveratrol, and 60 µg/mL serotonin. Malondialdehyde (MDA) and glutathione (GSH) levels, activity of glutathione peroxidase (GSH-Px), catalase, and carbonic anhydrase (CA), and susceptibility to oxidation in RBCs, and pH in whole blood were measured at baseline and on days 7, 14, 21, and 28. Results MDA levels and susceptibility to oxidation were increased in all three groups time-dependently, but this increase was greater in the serotonin group than in the other groups. Activity of GSH-Px, CAT, and CA, as well as GSH levels, were decreased in the control and serotonin groups time-dependently, but were significantly preserved in the resveratrol group. The pH was decreased in all groups time-dependently. Conclusion Our study shows that resveratrol attenuates susceptibility to oxidation of RBCs and protects their antioxidant capacity, and partially preserves CA activity time-dependently.

1997 ◽  
Vol 25 (5) ◽  
pp. 726-732 ◽  
Author(s):  
Robert D. Fitzgerald ◽  
Claudio M. Martin ◽  
Glen E. Dietz ◽  
Gordon S. Doig ◽  
Richard F. Potter ◽  
...  

OALib ◽  
2015 ◽  
Vol 02 (09) ◽  
pp. 1-7
Author(s):  
Samuel Antwi-Baffour ◽  
Samuel Appiah Danso ◽  
Jonathan Adjei ◽  
Ransford Kyeremeh ◽  
Michael Mark Addae

1996 ◽  
Vol 76 (03) ◽  
pp. 322-327 ◽  
Author(s):  
Dominique Helley ◽  
Amiram Eldor ◽  
Robert Girot ◽  
Rolande Ducrocq ◽  
Marie-Claude Guillin ◽  
...  

SummaryIt has recently been proved that, in vitro, red blood cells (RBCs) from patients with homozygous β-thalassemia behave as procoagulant cells. The procoagulant activity of β-thalassemia RBCs might be the result of an increased exposure of procoagulant phospholipids (i. e. phosphatidylserine) in the outer leaflet of the membrane. In order to test this hypothesis, we compared the catalytic properties of RBCs of patients with β-thalassemia and homozygous sickle cell disease (SS-RBCs) with that of controls. The catalytic parameters (Km, kcat) of prothrombin activation by factor Xa were determined both in the absence and in the presence of RBCs. The turn-over number (kcat) of the reaction was not modified by normal, SS- or (3-thalassemia RBCs. The Km was lower in the presence of normal RBCs (mean value: 9.1 µM) than in the absence of cells (26 µM). The Km measured in the presence of either SS-RBCs (mean value: 1.6 µM) or β-thalassemia RBCs (mean value: 1.5 pM) was significantly lower compared to normal RBCs (p <0.001). No significant difference was observed between SS-RBCs and p-thalassemia RBCs. Annexin V, a protein with high affinity and specificity for anionic phospholipids, inhibited the procoagulant activity of both SS-RBCs and (3-thalassemia RBCs, in a dose-dependent manner. More than 95% inhibition was achieved at nanomolar concentrations of annexin V. These results indicate that the procoagulant activity of both β-thalassemia RBCs and SS-RBCs may be fully ascribed to an abnormal exposure of phosphatidylserine at the outer surface of the red cells.


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Yaozhen Chen ◽  
Jing Zhang ◽  
Shunli Gu ◽  
Dandan Yin ◽  
Qunxing An ◽  
...  

During storage in blood banks, red blood cells (RBCs) undergo the mechanical and metabolic damage, which may lead to the diminished capacity to deliver oxygen. At high altitude regions, the above-mentioned damage may get worse. Thus, more attention should be paid to preserve RBCs when these components need transfer from plain to plateau regions. Recently, we found that mesenchymal stromal cells (MSCs) could rescue from anemia, and MSCs have been demonstrated in hematopoietic stem cells (HSCs) transplantation to reconstitute hematopoiesis in vivo by us. Considering the functions and advantages of MSCs mentioned above, we are trying to find out whether they are helpful to RBCs in storage duration at high altitudes. In the present study, we first found that mice MSCs could be preserved in citrate phosphate dextrose adenine-1 (CPDA-1) at 4 ± 2°C for 14 days, and still maintained great viability, even at plateau region. Thus, we attempted to use MSCs as an available supplement to decrease RBCs lesion during storage. We found that MSCs were helpful to support RBCs to maintain biochemical parameters and kept RBCs function well on relieving anemia in an acute hemolytic murine model. Therefore, our investigation developed a method to get a better storage of RBCs through adding MSCs, which may be applied in RBCs storage as a kind of cellular additive into preservation solution.


2021 ◽  
Vol 10 (3) ◽  
pp. 2414-2428

The synthesis and antioxidant of some new pyrazole analogs were described. It is achieved by the reaction of phenyl-4-(phenylsulfonyl)-1H-pyrazole-3,5-diamine (3) with different bifunctional reagents. The free radical-induced damage and the protective effects of the newly synthesized pyrazoles were studied. These new compounds inhibit the free radical-induced oxidative hemolysis of red blood cells effectively. It was found that these compounds effectively inhibit the free radical-induced oxidative hemolysis of red blood cells. Compound 5, which contain phenolic group, and 17, which bear sulfur, nitrogen atoms, and benzothiazole ring, respectively displayed high antioxidant activity. Analogs 15, 11, 10, and 9 were proved to exhibit antioxidative activity. Structures of new pyrazoles were confirmed by spectroscopic and elemental analyses and have been screened for their antioxidant activity.


2020 ◽  
Author(s):  
Rodney C Daniels ◽  
Hyesun Jun ◽  
Robertson D Davenport ◽  
Maryanne M Collinson ◽  
Kevin R Ward

Abstract Background Stored Red Blood Cells (RBCs) may undergo oxidative stress over time, with functional changes affecting critical tasks such as oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and the redox potential (RP) that must be maintained for proper cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions and transfusion-related morbidities. Direct measures of RP may allow for evaluation of erythrocyte quality and enable corrections of RP prior to transfusion. Methods Multiple random RBC segments were tested, ranging in age from 5 to 40 days at 5 day intervals. RP was recorded by measuring open circuit potential of RBCs using novel nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood samples from 10 healthy volunteers. RP measures were compared between groups of aged RBCs, and with volunteer blood. Results Stored RBCs show time-dependent increases in RP. There were significant differences in Day 5 RP compared to all other groups (p≤0.005), Day 10-15 vs ages ≥ Day 20 (p≤0.025), Day 20-25 vs Day 40 (p=0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age. However, storage time alone does not predict the ultimate RP value measured from a given unit.Conclusions There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be important independent of storage time and may serve as a marker of RBC quality and state of oxidative stress. RP measurements may also provide a target by which to restore RP balance in aged pRBCs, improving their clinical effectiveness while reducing associated morbidities.


2010 ◽  
Vol 20 (11) ◽  
pp. 1313-1318 ◽  
Author(s):  
Jian-Guo Fang ◽  
Man Lu ◽  
Lan-Ping Ma ◽  
Li Yang ◽  
Long-Min Wu ◽  
...  

2020 ◽  
Vol 318 (3) ◽  
pp. L533-L548
Author(s):  
Junghyun Kim ◽  
Trang T. T. Nguyen ◽  
Yue Li ◽  
Chen-Ou Zhang ◽  
Boyoung Cha ◽  
...  

Transfusion of red blood cells (RBCs) is a common life-saving clinical practice in severely anemic or hemorrhagic patients; however, it may result in serious pathological complications such as transfusion-related acute lung injury. The factors mediating the deleterious effects of RBC transfusion remain unclear. In this study, we tested the effects of washed long-term (RBC-O; >28 days) versus short-term (RBC-F; <14 days) stored RBCs and their supernatants on lung endothelial (EC) permeability under control and inflammatory conditions. RBCs enhanced basal EC barrier function as evidenced by an increase in transendothelial electrical resistance and decrease in permeability for macromolecules. RBCs also attenuated EC hyperpermeability and suppressed secretion of EC adhesion molecule ICAM-1 and proinflammatory cytokine IL-8 in response to LPS or TNF-α. In both settings, RBC-F had slightly higher barrier protective effects as compared with RBC-O. In contrast, supernatants from both RBC-F and RBC-O disrupted the EC barrier. The early phase of EC permeability response caused by RBC supernatants was partially suppressed by antioxidant N-acetyl cysteine and inhibitor of Src kinase family PP2, while addition of heme blocker and inhibition of NOD-like receptor family pyrin domain containing protein 3 (NLRP3), stress MAP kinases, receptor for advanced glycation end-products (RAGE), or Toll-like receptor-4 (TLR4) signaling were without effect. Morphological analysis revealed that RBC supernatants increased LPS- and TNF-α-induced breakdown of intercellular junctions and formation of paracellular gaps. RBC supernatants augmented LPS- and TNF-α-induced EC inflammation reflected by increased production of IL-6, IL-8, and soluble ICAM-1. These findings demonstrate the deleterious effects of RBC supernatants on EC function, which may have a major impact in pathological consequences associated with RBC transfusion.


2019 ◽  
Vol 85 (24) ◽  
Author(s):  
Hiroki Ozawa ◽  
Hiromu Yoshida ◽  
Shuzo Usuku

ABSTRACT Environmental surveillance can be used to trace enteroviruses shed from human stool using a sewer network that is independent of symptomatic or asymptomatic infection. In this study, the local transmission of enteroviruses was analyzed using two wastewater treatment plants, which were relatively close to each other (15 km), designated as sentinels. Influent was collected at both sentinels once a month from 2013 to 2016, and viruses were isolated. Using neutralizing tests with type-specific polyclonal antisera and molecular typing, 933 isolates were identified as enteroviruses. Our results showed that the frequency of virus isolation varied for each serotype at the two sentinels in a time-dependent manner. Because echovirus 11 (Echo11) and coxsackievirus B5 isolates showed a high frequency and were difficult to distinguish, they were further grouped into various lineages based on the VP1 amino acid sequences. The prevalence of each lineage was visualized using multidimensional scaling. The results showed that Echo11 isolates of the same lineage were isolated continuously, similar to coxsackievirus B5 isolates of three lineages. Conversely, Echo1, Echo13, Echo18, Echo19, Echo20, Echo29, and Echo33 were isolated only once each. Our findings suggested that if an enterovirus is imported into the population, it may result in small-scale transmission, whereas if there are initially many infected individuals, it may be possible for the virus to spread to a wide area, beyond the local community, over time. In addition, our findings could provide insights into risk assessment of transmission for importation of poliovirus in polio-free countries and regions. IMPORTANCE In this study, we showed that environmental enterovirus surveillance can be used to monitor the propagation of nonpolio enteroviruses in addition to poliovirus detection. Since epidemiological studies of virus transmission based on the past were performed using specimens from humans, there were limitations to research design, such as specimen collection for implementation on a large-scale target population. However, environmental monitoring can dynamically track the ecological changes in enteroviruses in the region by monitoring viruses in chronological order and targeting the population within the area by monitoring viruses over time. We observed differences in the transmission of echovirus 11 and coxsackievirus B5 in the region according to lineage in a time-dependent manner and with a multidimensional scaling pattern.


Sign in / Sign up

Export Citation Format

Share Document