scholarly journals Histocytology of Lymphoid Tumors in the Dog, Cat and Cow

1981 ◽  
Vol 18 (4) ◽  
pp. 494-512 ◽  
Author(s):  
V. E. Valli ◽  
B. J. Mcsherry ◽  
B. M. Dunham ◽  
R. M. Jacobs ◽  
J. H. Lumsden

In a retrospective study of lymphomas in animals, tumors in 72 dogs, 81 cats and 90 cows were classified on the basis of cell size (small, medium and large), nuclear cleavage (follicular center cells), and histologic architecture (nodular or diffuse). Each subtype was classified by age of animal at death, number of metastases, breed, and sex. As in man, nodular cleaved tumors are rare in animals, the cow having the most varied tumor types. There was one cleaved-cell tumor in 72 lymphomas in dogs, 23 of 81 in cats, and 33 of 90 in cows. There were six nodular tumors of 72 in dogs, two of 81 in cats, and eight of 90 in cows. Fifteen of 16 nodular lymphomas had noncleaved cells and twelve had small or predominantly small cells. Cats with nodular lymphomas were older at death than cats with diffuse lymphomas. Nodularity was not associated with greater age at death in dogs and cows. Animals with cleaved-cell lymphomas were older at death than those with noncleaved tumors; this difference was highly significant in cows. The number of metastases was greater with nodular tumors in all three species, and was equal in cleaved and noncleaved tumors. The biological behaviour of lymphoid tumors in animals is similar to those in man when the same criteria of classification are used.

2019 ◽  
Vol 72 (12) ◽  
Author(s):  
Olena O Dyadyk ◽  
Anastasiia Hryhorovska

Introduction: Tenosynovial giant cell tumor (TSGCT) (synonym – pigmented villonodular synovitis) – is a rare benign proliferative lesion of the synovial sheath, localized in the joint capsule, bursa or tendon sheath and characterized by locally destructive growth. Depending on the prevalence within the joint elements, the presence of a capsule around the tumor, histophotographic features of cell structure and clinical behavior TSGCT can be divided to localized or diffuse type. The aim of the study was researching of histopathological properties of diffuse-type TSGCT, determine the parameters its morphological indicators and to find out the correlation between these morphological and clinical parameters. Materials and methods: The research material was used biopsy (resect) of pathological lesions from 50 patients who were diagnosed and histologically verified diffuse-type TSGCT. Microscopic examinations of the stained sections and their photo archiving were carried out with use of a Olympus-CX 41 light optical microscope. Group measurable parameters (mean values and Pearson tetrachoric index (association coefficient) were calculated in groups of comparison for morphological and clinical indices of TSGCT. The mean values were compared by Student’s test, P value of ≤0.1 was considered statistically significant. Results:Correlation analysis of indicators that accounted for the pairs of cases «clinic – morphology» revealed the relationships, that had the highest parameters of the association coefficient between such indicators: «presence of villous growths» - «severity of hemosiderosis» (if hypertrophied synovial villi available, with vascular injection and pronounced proliferation of synovial cells, there is also a significant accumulation of hemosiderin pigment); «presence of villous growths» - «type of predominant cellular proliferates» (if cells of TSGCT diffuse type consists of monotonous sheets of stromal cells, with uniform, oval to reniform nuclei, the proliferation of villi in synovial layer is non-distinctive); «presence of nodes» - «kind of stroma» (if nodes predominate, their histological structure is mainly represented by polymorphic clusters of synovitis cells in the form of cells, strands, chains, solid formations, among immature connective tissue with low hyalinosis); «cell size (area, cm²)» - «severity of haemosiderosis» and «cell size (area, cm²)» - «the number of multinucleated giant cells» (there is a pronounced deposition of pigment and accumulation of osteoclast-like multinucleated giant cells type, although usually their number is relatively small compared to the localized type of TSGCT). Conclusions: Morphological parameters, that we have identified, characterize pathological changes in the tissues of TSGCT; careful analysis of the frequency of their occurrence in the different comparison groups made it possible to establish intergroup differences and correlations between individual indicators, which were previously unknown or not obvious. Our study was determine to analyze of incidence rates and correlation relationships, revealed some previously unknown differences and dependencies that are important for understanding the pathogenesis, improvement of diagnosis and prognosis of diffuse-type TSGCT.


1997 ◽  
Vol 7 (1) ◽  
pp. 58-65 ◽  
Author(s):  
P. Pautier ◽  
C. Lhomme ◽  
S. Culine ◽  
P. Duvillard ◽  
G. Michel ◽  
...  

2021 ◽  
Author(s):  
Shixuan Liu ◽  
Ceryl Tan ◽  
Chloe Melo-Gavin ◽  
Kevin G. Mark ◽  
Miriam Bracha Ginzberg ◽  
...  

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. This tight control of cell size involves both cell size checkpoints (e.g., delaying cell cycle progression for small cells) and size-dependent compensation in rates of mass accumulation (e.g., slowdown of cellular growth in large cells). We previously identified that the mammalian cell size checkpoint is mediated by a selective activation of the p38 MAPK pathway in small cells. However, mechanisms underlying the size-dependent compensation of cellular growth remain unknown. In this study, we quantified global rates of protein synthesis and degradation in naturally large and small cells, as well as in conditions that trigger a size-dependent compensation in cellular growth. Rates of protein synthesis increase proportionally with cell size in both perturbed and unperturbed conditions, as well as across cell cycle stages. Additionally, large cells exhibit elevated rates of global protein degradation and increased levels of activated proteasomes. Conditions that trigger a large-size-induced slowdown of cellular growth also promote proteasome-mediated global protein degradation, which initiates only after growth rate compensation occurs. Interestingly, the elevated rates of global protein degradation in large cells were disproportionately higher than the increase in size, suggesting activation of protein degradation pathways. Large cells at the G1/S transition show hyperactivated levels of protein degradation, even higher than similarly sized or larger cells in S or G2, coinciding with the timing of the most stringent size control in animal cells. Together, these findings suggest that large cells maintain cell size homeostasis by activating global protein degradation to induce a compensatory slowdown of growth.


2017 ◽  
Author(s):  
Shixuan Liu ◽  
Miriam B. Ginzberg ◽  
Nish Patel ◽  
Marc Hild ◽  
Bosco Leung ◽  
...  

AbstractAnimal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.One-sentence summaryThe p38 MAP kinase pathway coordinates cell growth and cell cycle progression by lengthening G1 in small cells, allowing them more time to grow before their next division.


2021 ◽  
Vol 8 (7) ◽  
pp. 2193
Author(s):  
Sreepriya P. P. ◽  
Shreekant Bharti ◽  
Ashesh Kumar Jha ◽  
Manoj Kumar

Primary tumours of mesentery are relatively rare, and its biological behaviour is unpredictable. We herein describing a case of incidentally detected mesenteric leiomyoma along with review of literature in a 19-year-old gentleman, who had a mass in the mesentery of terminal ileum, which was detected during surgery. Mesentric masses can be both solid as well as cystic. Published reports have consisted of small numbers of cases, which makes it difficult to determine the incidence of specific tumor types. Reasonable estimates of incidence ranges from 1 case per 200,000 population and in 30-40% cases they are cystic and more in females. Diagnosis is delayed unless they become symptomatic with haemorrhage, obstruction or mass per abdomen. As primary mesenteric tumors are rare, particularly in young patients, it is considered important that this type of unusual tumor be included in the differential diagnosis for mesenteric tumors. Since the biologic behaviour of mesenteric smooth muscle tumours seems to be unpredictable long term follow up is warranted.


1928 ◽  
Vol 5 (4) ◽  
pp. 309-336
Author(s):  
I. L. DEAN ◽  
M. E. SHAW ◽  
M. A. TAZELAAR

1. Temperature gradients were passed through the developing frog's egg and embryos. These gradients were applied either (a) apico-basally, when they were either (i) adjuvant, or (ii) antagonistic to the egg's own main gradient; or (b) transversely to the egg's main axis--lateral gradients. 2. (a) By this means considerable modification of segmentation and of cell size was induced, and was especially marked in the mid-blastula. Adjuvant gradients accentuated the normal differences in cell size between the animal and vegetative poles. Antagonistic gradients produced a double gradient in cell size, the smallest cells being in the region of the equator, and animal cells, in extreme cases, larger than yolk cells. (b) Several cases of the non-formation or obliteration of the blastocoel were obtained by all methods of treatment. (c) Too high temperature with adjuvant gradient produced inhibition at the animal pole, the large retarded cells being very sharply marked off from the surrounding small cells. (d) Lateral gradients produced a great difference in cell size on the two sides of the eggy and, as in the cases of "inhibition," a sharp line of demarcation may appear between the large cells of the cooled side and the small cells of the heated side. (e) When two sets of exactly similar eggs were treated simultaneously in opposite ways, then those subjected to the adjuvant gradient were always, at the close of the experiment, at a more advanced stage of development than those subjected to an antagonistic gradient. Because of this the yolk cells of the "adjuvant" eggs were smaller than those of the "antagonistic" eggs, although the former were cooled and the latter heated. (f) There seems to be a slight permanent effect of the gradient applied during segmentation. Eggs treated with antagonistic gradient tend to develop into microcephalous tadpoles and vice versa. 3. (a) Antagonistic gradients during gastrulation cause a reduction of the gastrular angle. (For definition see Bellamy (1919).) (b) Antagonistic gradient causes the eggs to gastrulate sooner than adjuvant eggs under exactly similar experimental conditions. (c) In the neurula stage the differential effect of the gradient is seen in the inhibition of the head and dorsal region in those subjected to antagonistic gradient, and inhibition of tail and ventral region in those subjected to adjuvant gradient. (d) Whether this alteration of relative sizes of head and tail regions is maintained in later development has not yet been ascertained. (e) Eggs exposed to lateral gradients in all stages of gastrulation showed marked asymmetries, some of which were apparently regulated later, while others persisted till the death of the tadpole. 4. Side-to-side treatment in the tail bud stage caused the development of marked asymmetry as the result of differential growth of the two sides. As in the case of 3 (e) some tadpoles appeared to regulate back to normal, whereas others remained markedly asymmetrical till death.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Miriam Bracha Ginzberg ◽  
Nancy Chang ◽  
Heather D'Souza ◽  
Nish Patel ◽  
Ran Kafri ◽  
...  

Cell size uniformity in healthy tissues suggests that control mechanisms might coordinate cell growth and division. We derived a method to assay whether cellular growth rates depend on cell size, by monitoring how variance in size changes as cells grow. Our data revealed that, twice during the cell cycle, growth rates are selectively increased in small cells and reduced in large cells, ensuring cell size uniformity. This regulation was also observed directly by monitoring nuclear growth in live cells. We also detected cell-size-dependent adjustments of G1 length, which further reduce variability. Combining our assays with chemical/genetic perturbations confirmed that cells employ two strategies, adjusting both cell cycle length and growth rate, to maintain the appropriate size. Additionally, although Rb signaling is not required for these regulatory behaviors, perturbing Cdk4 activity still influences cell size, suggesting that the Cdk4 pathway may play a role in designating the cell’s target size.


2019 ◽  
Author(s):  
C Martín Blanco ◽  
C del Valle Rubido ◽  
E Cabezas López ◽  
B Pérez Mies ◽  
E Moratalla Bartolomé ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Tong-min Xue ◽  
Li-de Tao ◽  
Miao Zhang ◽  
Jie Zhang ◽  
Xia Liu ◽  
...  

miRNA-20b has been shown to be aberrantly expressed in several tumor types. However, the clinical significance of miRNA-20b in the prognosis of patients with hepatocellular carcinoma (HCC) is poorly understood, and the exact role of miRNA-20b in HCC remains unclear. The aim of the present study was to investigate the association of the expression of miR-20b with clinicopathological characteristics and overall survival of HCC patients analyzed by Kaplan-Meier analysis and Cox proportional hazards regression models. Meanwhile, the HIF-1αand VEGF targets of miR-20b have been confirmed. We found not only miR-20b regulation of HIF-1αand VEGF in normal but also regulation of miR-20b in hypoxia. This mechanism would help the tumor cells adapt to the different environments thus promoting the tumor invasion and development. The whole study suggests that miR-20b, HIF-1α, and VEGF serve as a potential therapeutic agent for hepatocellular carcinoma.


Sign in / Sign up

Export Citation Format

Share Document