Thermodynamic Analysis of Waste-Heat Thermoelectric Generators

1997 ◽  
Vol 25 (3) ◽  
pp. 197-204
Author(s):  
Mamdouh el Haj Assad

A thermodynamic analysis of a real waste-heat thermoelectric generator is investigated. The thermoelectric generator is considered as a heat engine cycle process with internal irreversibilities. The efficiency of the thermoelectric generator is expressed in terms of two non-dimensional parameters which are to be optimized. A finite-time thermodynamic analysis is used to optimize the temperatures of the hot and cold junctions of the real thermoelectric generator. A comparison between ideal and real waste-heat thermoelectric generators is demonstrated.

2012 ◽  
Vol 204-208 ◽  
pp. 4250-4253
Author(s):  
Xi Ling Zhao ◽  
Yan Li ◽  
Lin Fu

The absorption heat pump was studied with finite time thermodynamics. A four reservoirs model of absorption heat pump which is treated as an irreversible Carnot heat pump driven by an irreversible Carnot heat engine was established considering the heat resistance and the irreversibility of the internal cycle. A generalized optimization relationship between the main parameters and the corresponding conditions were derived. It is show that, two internal irreversibility parameters, the heat engine cycle and the heat pump cycle has different effects on system performance, and the reduction of the friction, heat loss, and internal dissipations of the equivalent heat pump cycle are more important than its reduction of heat engine cycle.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 397 ◽  
Author(s):  
Lingen Chen ◽  
Yanlin Ge ◽  
Chang Liu ◽  
Huijun Feng ◽  
Giulio Lorenzini

Considering the finite time characteristic, heat transfer loss, friction loss and internal irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic processes and two adiabatic processes, is well generalized. The performance parameters, including the power output and efficiency (PAE), are obtained. The PAE versus compression ratio relations are obtained by numerical computation. The impacts of variable specific heats ratio (SHR) of working fluid (WF) on universal cycle performances are analyzed and various special cycles are also discussed. The results include the PAE performance characteristics of various special cycles (including Miller, Dual, Atkinson, Brayton, Diesel and Otto cycles) when the SHR of WF is constant and variable (including the SHR varied with linear function (LF) and nonlinear function (NLF) of WF temperature). The maximum power outputs and the corresponding optimal compression ratios, as well as the maximum efficiencies and the corresponding optimal compression ratios for various special cycles with three SHR models are compared.


Author(s):  
Leo Beltracchi

A model-based display of the heat engine cycle for a nuclear power plant is defined and illustrated in terms of the thermodynamic first principles used to design the plant. The model-based display is a modified Rankine Cycle, the basic heat engine cycle for power plants. The display is made from measured process variables and the properties of water and presented on a CRT in iconic form, thereby providing a direct perception of the process. This structure of display design is an example of Rasmussen's means-ends hierarchy; starting with the abstract and ending with the specific display. Encoding the display with dynamic data aids operators in monitoring and interpreting the plant during transients and disturbances. Analytical data on the TMI-2 accident is used to illustrate the dynamic coding of the model-based display. The concepts discussed and illustrated are applicable to fossil and nuclear power plants and to other process industries.


Author(s):  
Mostafa H. Sharqawy

A new thermodynamic cycle is proposed named mass engine cycle. In the proposed cycle, mass is transferred from a high mass concentration reservoir to the cycle, mass is rejected to a low mass concentration reservoir, and a net positive work is generated. This is similar to heat engine cycles where heat is transferred from a high temperature thermal reservoir (heat source) to the cycle; heat is rejected to a low temperature thermal reservoir (heat sink), and a net positive work is generated. The heat engine cycle uses heat exchangers to transfer heat between the cycle and the thermal reservoirs, while the mass engine cycle uses membrane mass exchangers which transfer mass between the cycle and the mass reservoir. These membrane mass exchangers transfer water through a semi-permeable membrane and reject other substances. The driving force for the mass transfer is the hydrostatic and osmotic pressure differences. Similar to Carnot limit of the thermal efficiency of the heat engine cycle, a theoretical limit is obtained for the proposed mass engine cycle under reversible thermodynamic conditions.


Author(s):  
Mehmet Akif Kunt ◽  
Haluk Gunes

In this study, a thermoelectric recovery system was designed to convert the exhaust waste heat of an internal combustion diesel engine directly to electric power and the performance was measured at different engine speeds in the unloaded state. The performances of two different thermoelectric generators were compared in a system designed using four modules. Maximum 0.92 W power was obtained for four modules at 3500 r/min, at an area of 0.0016 m2. Internal resistance of modules has increased according to the engine speed. The highest internal resistance obtained during the experiments is 11.69 Ω at engine speed of 3500 r/min. The characteristics of the overall thermoelectric generator performance is coherent with the analysis model. In the current graph according to engine speed, the maximum absolute error is calculated for modules TEG 12-8 and TEG1-199 as 0.010 and 0.044, respectively (at experimented 3500 r/min). To charge the battery under maximum power point conditions, 133 thermoelectric modules were required (TEG1-199). Maximum power transfer is obtained when the load resistor is connected in parallel at 10 Ω. It is seen that modular structure thermoelectric generators are more important alternative than Rankine cycle system in terms of waste heat recovery, despite thermoelectric system has low efficiency.


Sign in / Sign up

Export Citation Format

Share Document