scholarly journals Dynamic characterisation of Össur Flex-Run prosthetic feet for a more informed prescription

2018 ◽  
Vol 43 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Siamak Noroozi ◽  
Zhi Chao Ong ◽  
Shin Yee Khoo ◽  
Navid Aslani ◽  
Philip Sewell

Background: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee’s static body weight/mass. Objectives: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot. Study Design: Experimental Assessment. Methods: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO–9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition. Results: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance. Conclusion: A better understanding of dynamic characteristics of the feet can help tune the feet to the user’s requirements in promoting a better gait performance. Clinical relevance The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.

This article presents a critical review of recent research done on crack identification and localization in structural beams using numerical and experimental modal analysis. Crack identification and localization in beams are very crucial in various engineering applications such as ship propeller shafts, aircraft wings, gantry cranes, and Turbo machinery blades. It is necessary to identify the damage in time; otherwise, there may be serious consequences like a catastrophic failure of the engineering structures. Experimental modal analysis is used to study the vibration characteristics of structures like natural frequency, damping and mode shapes. The modal parameters like natural frequency and mode shapes of undamaged and damaged beams are different. Based on this reason, structural damage can be detected, especially in beams. From the review of various research papers, it is identified that a lot of the research done on beams with open transverse crack. Crack location is identified by tracking variation in natural frequencies of a healthy and cracked beam


2013 ◽  
Vol 790 ◽  
pp. 655-658
Author(s):  
Chi Chen ◽  
Min Wang ◽  
Long Zou

The modal analysis is an approximate method to study the dynamic characteristics of the structure, the modal is the natural vibration characteristics of the structure, each modal has a specific natural frequency, damping ratios and mode shapes. This thesis will take 1.2MW horizontal axis wind turbine blade for example, and use parametric language APDL of ANSYS for directly modeling, then set the basic parameters of the material, mesh and discuss modal analysis, lastly conduct a detailed analysis of the results.


2017 ◽  
Vol 79 (6) ◽  
Author(s):  
Mohd Irman Ramli ◽  
Mohd. Zaki Nuawi ◽  
Shahrum Abdullah ◽  
Mohammad Rasidi Mohammad Rasani ◽  
Muhamad Arif Fadli Ahmad ◽  
...  

This study is conducted to determine the modal parameters namely natural frequencies and mode shapes of aluminum 6061 (Al6061). The parameters are done by conducting a free dynamic vibration analysis. Modal analysis study was conducted by both simulation and experimental approaches. The simulation was conducted via ANSYS software while the experimental work was performed through impact hammer testing to determine the vibration parameter. Two sensors i.e. piezoelectric film and accelerometer were used. The result obtained were ya = 302.02x – 52.51 (accelerometer) and yp = 295.78x - 41.73 (piezofilm). ya (accelerometer) and yp (piezofilm) is linear equation of the data plotted according to the reading from mode shape versus natural frequency. The relation between natural frequency from accelerometer and piezofilm for the rectangular-shaped specimen was ya = 1.02yp – 9.90 and can be concluded that the regression ratio of 1.02 was approximately 1.0 which agreed with the status of piezoelectric film sensor that can be used as an alternative sensor for accelerometer. There was a good results agreement between simulation and experimental work outcome.


2013 ◽  
Vol 694-697 ◽  
pp. 370-373
Author(s):  
Zhang Yu ◽  
Wen Zheng Cai

With the purpose of realizing the analysis of mechanical structure dynamic characteristics and inhibit vibration and noise, combined with the analysis of a certain type of high speed sewing machines vibration characteristics, we carry on the concrete experimental modal analysis, and compare the results of the experimental modal analysis with the results of spectrum analysis. The analysis results show that the second order natural frequency of the shell is close to two octaves under the normal working speed of sewing machine and it will lead to resonance. Enhancing the structural rigidity and the natural frequency under this modal to avoid resonance frequency is the key to improve vibration resistance of the structure.


2013 ◽  
Vol 690-693 ◽  
pp. 3023-3026
Author(s):  
Jun Zhang ◽  
Chun Ren Tang ◽  
Hong Mei Tang ◽  
Xian Hua Li ◽  
Meng Meng Niu ◽  
...  

It is significant to study the dynamic characteristics of the mechanical system. In order to prevent accidents such as resonance and self-excited shock, modal analysis of the mechanical systems should be analyzed. The mode shape of gears was analyzed to improving the design security. The sleeve, the planet gears and the internal gear of the motor were simulated. All order natural frequency, the mode shape of the motor was obtained. Research shows that motor running is smooth when the frequency is less than 4230Hz.


2012 ◽  
Vol 189 ◽  
pp. 443-447
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of an aero-engine shrouded turbine blade and makes an actual modal analysis of this shrouded blade based on this method in UG software environment. The first six natural frequencies and mode shapes of this shrouded blade are calculated. And also, the dynamic characteristics of the shrouded turbine blade are discussed in detail according to the analysis results. The FEA method and the vibration characteristics analysis results in the paper can be used for optimal design and vibration safety verification of this aero-engine shrouded turbine blade.


2020 ◽  
Vol 25 (2) ◽  
pp. 200-208
Author(s):  
Guanhua Xu ◽  
Jianzhong Fu ◽  
Wen He ◽  
Yuetong Xu ◽  
Zhiwei Lin ◽  
...  

The vibration table in a combination environmental testing device suffers from temperature changes, which cause the dynamic characteristics of the vibration structure to vary. The mechanism of the thermal effect on the dynamic characteristics of an elastic structure is presented, and a modal analysis with thermal effects based on the finite-element method (FEM) is carried out. The results show that the natural frequencies for each order decrease as the temperature increases, while the mode shapes of the vibrator do not change with temperature. Although thermal stress may affect natural frequencies due to the additional initial stress element stiffness, this stress can be neglected in the modal analysis because it is negligible relative to the effect of the material property changes with temperature.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23 ◽  
Author(s):  
Siva Sankara Babu Chinka ◽  
Balakrishna Adavi ◽  
Srinivasa Rao Putti

In this paper, the dynamic behavior of a cantilever beam without and with crack is observed. An elastic Aluminum cantilever beams having surface crack at various crack positions are considered to analyze dynamically. Crack depth, crack length and crack location are the foremost parameters for describing the health condition of beam in terms of modal parameters such as natural frequency, mode shape and damping ratio. It is crucial to study the influence of crack depth and crack location on modal parameters of the beam for the decent performance and its safety. Crack or damage of structure causes a reduction in stiffness, an intrinsic reduction in resonant frequencies, variation of damping ratios and mode shapes. The broad examination of cantilever beam without crack and with crack has been done using Numerical analysis (Ansys18.0) and experimental modal analysis. To observe the exact higher modes of beam, discretize the beam into small elements. An experimental set up was established for cantilever beam having crack and it was excited by an impact hammer and finally the response was obtained using PCB accelerometer with the help sound and vibration toolkit of NI Lab-view. After obtaining the Frequency response functions (FRFs), the natural frequencies of beam are estimated using peak search method. The effectiveness of experimental modal analysis in terms of natural frequency is validated with numerical analysis results. This paper contains the study of free vibration analysis under the influence of crack at different points along the length of the beam.


As natural frequencies and mode shapes are often a key to understanding dynamic characteristics of structural elements, modal analysis provides a viable means to determine these properties. This paper investigates the dynamic characteristics of a healthy and unhealthy condition of a commercially used helical gear using the Frequency Domain Decomposition (FDD) identification algorithm in Operational Modal Analysis (OMA). For the unhealthy condition, a refined range of percentage of defects are introduced to the helical gear starting from one (1) tooth being defected (1/60 teeth) to six (6) teeth being defected (6/60 teeth). The specimen is tested under a free-free boundary condition for its simplicity and direct investigation purpose. Comparison of the results of these varying conditions of the structure will be shown to justify the validity of the method used. Acceptable modal data are obtained by considering and accentuating on the technical aspects in processing the experimental data which are critical aspects to be addressed. The natural frequencies and mode shapes are obtained through automatic and manual peak-picking process from Singular Value Decomposition (SVD) plot using Frequency Domain Decomposition (FDD) technique and the results are validated using the established Modal Assurance Criterion (MAC) indicator. The results indicate that OMA using FDD algorithm is a good method in identifying the dynamic characteristics and hence, is effective in detection of defects in this rotating element


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5816
Author(s):  
Maria Rashidi ◽  
Pejman Sharafi ◽  
Mohammad Alembagheri ◽  
Ali Bigdeli ◽  
Bijan Samali

The modal properties of modular structures, such as their natural frequencies, damping ratios and mode shapes, are different than those of conventional structures, mainly due to different structural systems being used for assembling prefabricated modular units onsite. To study the dynamic characteristics of modular systems and define a dynamic model, both the modal properties of the individual units and their connections need to be considered. This study is focused on the former aspect. A full-scale prefabricated volumetric steel module was experimentally tested using operational modal analysis technique under pure ambient vibrations and randomly generated artificial hammer impacts. It was tested in different situations: [a] bare (frame only) condition, and [b] infilled condition with different configurations of gypsum and cement-boards light-steel framed composite walls. The coupled module-wall system was instrumented with sensitive accelerometers, and its pure and free vibration responses were synchronously recorded through a data acquisition system. The main dynamic characteristics of the module were extracted using output-only algorithms, and the effects of the presence of infill wall panels and their material are discussed. Then, the module’s numerical micromodel for bare and infilled states is generated and calibrated against experimental results. Finally, an equivalent linear strut macro-model is proposed based on the calibrated data. The contribution of this study is assessing the effects of different infill wall materials on the dynamic characteristics of modular steel units, and proposing simple models for macro-analysis of infilled module assemblies.


Sign in / Sign up

Export Citation Format

Share Document