scholarly journals Dynamic Characteristics of an Elastic Structure with Thermal Effects

2020 ◽  
Vol 25 (2) ◽  
pp. 200-208
Author(s):  
Guanhua Xu ◽  
Jianzhong Fu ◽  
Wen He ◽  
Yuetong Xu ◽  
Zhiwei Lin ◽  
...  

The vibration table in a combination environmental testing device suffers from temperature changes, which cause the dynamic characteristics of the vibration structure to vary. The mechanism of the thermal effect on the dynamic characteristics of an elastic structure is presented, and a modal analysis with thermal effects based on the finite-element method (FEM) is carried out. The results show that the natural frequencies for each order decrease as the temperature increases, while the mode shapes of the vibrator do not change with temperature. Although thermal stress may affect natural frequencies due to the additional initial stress element stiffness, this stress can be neglected in the modal analysis because it is negligible relative to the effect of the material property changes with temperature.

2021 ◽  
pp. 0309524X2110116
Author(s):  
Oumnia Lagdani ◽  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Mourad Trihi ◽  
Houda Laaouidi

In the far north, low temperatures and atmospheric icing are a major danger for the safe operation of wind turbines. It can cause several problems in fatigue loads, the balance of the rotor and aerodynamics. With the aim of improving the rigidity of the wind turbine blade, composite materials are currently being used. A numerical work aims to evaluate the effect of ice on composite blades and to determine the most adequate material under icing conditions. Different ice thicknesses are considered in the lower part of the blade. In this paper, modal analysis is performed to obtain the natural frequencies and corresponding mode shapes of the structure. This analysis is elaborated using the finite element method (FEM) computer program through ABAQUS software. The results have laid that the natural frequencies of the blade varied according to the material and thickness of ice and that there is no resonance phenomenon.


2012 ◽  
Vol 189 ◽  
pp. 443-447
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of an aero-engine shrouded turbine blade and makes an actual modal analysis of this shrouded blade based on this method in UG software environment. The first six natural frequencies and mode shapes of this shrouded blade are calculated. And also, the dynamic characteristics of the shrouded turbine blade are discussed in detail according to the analysis results. The FEA method and the vibration characteristics analysis results in the paper can be used for optimal design and vibration safety verification of this aero-engine shrouded turbine blade.


2020 ◽  
Vol 30 (5-6) ◽  
pp. 217-225
Author(s):  
Samir Deghboudj ◽  
Wafia Boukhedena ◽  
Hamid Satha

The present work aims to carry out modal analysis of orthotropic thin rectangular plate to determine its natural frequencies and mode shapes by using analytical method based on Rayleigh-Ritz energy approach. To demonstrate the accuracy of this approach, the same plate is discritisated and analyzed using the finite element method. The natural and angular frequencies were computed and determined analytically and numerically by using ABAQUS finite element code. The convergency and accuracy of the numerical solution was examined. The effects of geometrical parameters and boundary conditions on vibrations are investigated. The results obtained showed a very good agreement between the analytical approach and the numerical simulations. Also, the paper presents simulations results of testing of the plate with passive vibration control.


As natural frequencies and mode shapes are often a key to understanding dynamic characteristics of structural elements, modal analysis provides a viable means to determine these properties. This paper investigates the dynamic characteristics of a healthy and unhealthy condition of a commercially used helical gear using the Frequency Domain Decomposition (FDD) identification algorithm in Operational Modal Analysis (OMA). For the unhealthy condition, a refined range of percentage of defects are introduced to the helical gear starting from one (1) tooth being defected (1/60 teeth) to six (6) teeth being defected (6/60 teeth). The specimen is tested under a free-free boundary condition for its simplicity and direct investigation purpose. Comparison of the results of these varying conditions of the structure will be shown to justify the validity of the method used. Acceptable modal data are obtained by considering and accentuating on the technical aspects in processing the experimental data which are critical aspects to be addressed. The natural frequencies and mode shapes are obtained through automatic and manual peak-picking process from Singular Value Decomposition (SVD) plot using Frequency Domain Decomposition (FDD) technique and the results are validated using the established Modal Assurance Criterion (MAC) indicator. The results indicate that OMA using FDD algorithm is a good method in identifying the dynamic characteristics and hence, is effective in detection of defects in this rotating element


2013 ◽  
Vol 455 ◽  
pp. 248-252
Author(s):  
Jun Yuan Sun ◽  
Ji Ming Xiao

The mud pump damming technology is a new idea put forward for realization of mechanization and automation of warping dam construction. A mud pump damming machine is studied, the FEM of the mud transfer pump rotor is built, modal analysis and rotor-dynamic analysis are carried out, natural frequencies and mode shapes under different constraints are obtained and the critical speeds of the pump rotor are determined, which will provide reference to improve the running reliability of the mud transfer pump rotor.


Author(s):  
Zhiyuan Zhang ◽  
Ashok V. Kumar

Modal analysis is widely used for linear dynamic analysis of structures. The finite element method is used to numerically compute stiffness and mass matrices and the corresponding eigenvalue problem is solved to determine the natural frequencies and mode shapes of vibration. Implicit boundary method was developed to use equations of the boundary to apply boundary conditions and loads so that a background mesh can be used for analysis. A background mesh is easier to generate because the elements do not have to conform to the given geometry and therefore uniform regular shaped elements can be used. In this paper, we show that this approach is suitable for modal analysis and modal superposition techniques as well. Furthermore, the implicit boundary method also allows higher order elements that use B-spline approximations. Several test examples are studied for verification.


2012 ◽  
Vol 268-270 ◽  
pp. 1075-1079
Author(s):  
Chen Zhang ◽  
Zhi Gang Yang ◽  
Yin Zhi He

Modal analysis is a modern method to study structure dynamic characteristics. In this paper, computational modal analysis with Finite Element Method is applied to simulate an aluminum plate with the dimension of 160mm*240mm*1.5mm under different boundary conditions (Including free boundary condition and fixed boundary condition). The results of structure natural frequencies and mode shapes of this plate show obvious difference between the two boundary conditions.


Author(s):  
P. K. Karsh ◽  
Bindi Thakkar ◽  
R. R. Kumar ◽  
Abhijeet Kumar ◽  
Sudip Dey

The delamination is one of the major modes of failure occurring in the laminated composite due to insufficient bonding between the layers. In this paper, the natural frequencies of delaminated S-glass and E-glass epoxy cantilever composite plates are presented by employing the finite element method (FEM) approach. The rotary inertia and transverse shear deformation are considered in the present study. The effect of parameters such as the location of delamination along the length, across the thickness, the percentage of delamination, and ply-orientation angle on first three natural frequencies of the cantilever plates are presented for S-glass and E-glass epoxy composites. The standard eigenvalue problem is solved to obtain the natural frequencies and corresponding mode shapes. First three mode shape of S-Glass and E-Glass epoxy laminated composites are portrayed corresponding to different ply angle of lamina.


2017 ◽  
Vol 24 (19) ◽  
pp. 4465-4483 ◽  
Author(s):  
Mohsen Amjadian ◽  
Anil K Agrawal

Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved bridges that would be of interest to bridge engineers for the estimation of the seismic response of these types of bridges. For this purpose, a simple three-degree-of-freedom (3DOF) dynamic model for free vibration equation of this type of bridge has been developed. It is shown that the translational motion of the deck of horizontally curved bridges in the direction that is perpendicular to their axis of symmetry is always coupled with the rotational motion of the deck, regardless of the location of the stiffness center. The model is further exploited to develop closed-form formulas for the estimation of the maximum displacements of the corners of the deck of one-way asymmetric horizontally curved bridges. The accuracy of the model is verified by finite-element model of a horizontally curved bridge prototype in OpenSEES. Finally, the model is utilized to study the influence of the location of the stiffness center with respect to the deck curvature center on the natural frequency and the maximum displacements of the corners of the deck for different curvatures of the deck. The results of free vibration analysis show that the natural frequencies of one-way asymmetric horizontally curved bridges, in general, increase with the increase of the subtended angle of the deck. The results of earthquake response spectrum analysis show that the increase in the subtended angle of one-way asymmetric horizontally curved bridges decreases the radial displacements of the corners of the deck but increases the azimuthal displacement. These two responses both increase with the increase in the distance between the stiffness center and the curvature center.


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


Sign in / Sign up

Export Citation Format

Share Document