Adaptation Planning to Mitigate Coastal-Road Pavement Damage from Groundwater Rise Caused by Sea-Level Rise

Author(s):  
Jayne F. Knott ◽  
Jo Sias Daniel ◽  
Jennifer M. Jacobs ◽  
Paul Kirshen

Sea level in coastal New England is projected to rise 3.9–6.6 ft (1.2–2.0 m) by the year 2100. Many climate-change vulnerability and adaptation studies have investigated surface-water flooding from sea-level rise (SLR) on coastal-road infrastructure, but few have focused on rising groundwater. Groundwater modeling in New Hampshire’s Seacoast Region has shown that SLR-induced groundwater rise will occur three to four times farther inland than surface-water flooding, potentially impacting 23% of the region’s roads. Pavement service-life has been shown to decrease when the unbound layers become saturated. In areas where groundwater is projected to rise with SLR, pavements with groundwater 5.0 ft (1.5 m) deep or less are at risk of premature failure as groundwater moves into the pavement’s underlying unbound layers. In this study, groundwater hydrology and multi-layer elastic pavement analysis were used to identify two case-study sites in coastal New Hampshire that are predicted to experience pavement service-life reduction caused by SLR-induced groundwater rise. Various pavement structures were evaluated to determine adaptation feasibility and costs to maintain the designed service-life in the face of rising groundwater. This investigation shows that relatively simple pavement structural modifications to the base and asphalt concrete (AC) layers of a regional corridor can eliminate the 80% to 90% service-life reduction projected with 1.0 ft SLR (year 2030) and will delay pavement inundation by 20 years. Pavements with adequate base-layer materials and thickness require only AC thickness modification to avoid premature pavement failure from SLR-induced groundwater rise.

Author(s):  
Jayne F. Knott ◽  
Mohamed Elshaer ◽  
Jo Sias Daniel ◽  
Jennifer M. Jacobs ◽  
Paul Kirshen

Coastal communities with road infrastructure close to the shoreline are vulnerable to the effects of sea level rise caused by climate change. The sea level in coastal New Hampshire is projected to rise by 3.9 to 6.6 ft (1.2 to 2.0 m) by 2100. Climate change vulnerability and adaptation studies have focused on surface water flooding caused by sea level rise; however, little attention has been given to the effects of climate change on groundwater. Groundwater is expected to rise with sea level rise and will intersect the unbound layers of coastal road infrastructure, thus reducing the service life of pavement. Vulnerability studies are an essential part of adaptation planning, and pavement engineers are looking for methods to identify roads that may experience premature failure. In this study, a regional groundwater flow model of coastal New Hampshire was used to identify road infrastructure for which rising groundwater will move into the unbound materials during the design life of the pavement. Multilayer elastic theory was used to analyze typical pavement profiles in several functional classifications of roadway to determine the magnitude of fatigue and rutting life reduction expected from four scenarios of sea level rise. All the evaluation sites experienced service life reduction, the magnitude and timing of which depended on the current depth to groundwater, the pavement structure, and the subgrade. The use of this methodology will enable pavement engineers to target coastal road adaptation projects effectively and will result in significant cost savings compared with implementation of broad adaptation projects or the costs of no action.


2020 ◽  
Vol 47 (5) ◽  
pp. 487-497 ◽  
Author(s):  
Syed Waqar Haider ◽  
Muhammad Munum Masud ◽  
Karim Chatti

Moisture increase in pavement subsurface layers has a significant influence on granular material properties that affect the expected pavement performance. In situ moisture variations over time in an unbound base layer depend on water infiltration after precipitation and pavement surface conditions. Consequently, base resilient modulus (MR) is reduced, which leads to premature failure and reduced service life. This paper presents long-term pavement performance (LTPP) data analyses for quantifying the effect of moisture infiltration through surface cracking on flexible pavement performance. Subsurface moisture data obtained through the seasonal monitoring program (SMP) time domain reflectometry (TDR) are an excellent source for quantifying the moisture-related damage in flexible pavement located in different climates. An artificial neural network (ANN) model was developed based on the SMP data for flexible pavement sections. The results show that higher levels of cracking will lead to an increase in moisture levels within the base layer, which leads to a significant decrease in the base MR. For flexible pavement, the maximum reduction in base MR ranged from 18% to 41% and from 153% to 175% for the pavement sections located in dry and wet regions, respectively. Consequently, the performance of pavement sections located in wet climates is adversely affected. The findings imply that an adequate and timely preservation treatment for cracking sealing (e.g., surface seals) can enhance the pavement’s service life, especially in wet climates. The results suggest that cracks should be sealed when the extent of fatigue cracking is within 6% and 11% for the flexible pavement sections located in wet and dry climates, respectively.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2776
Author(s):  
Reyhaneh Rahimi ◽  
Hassan Tavakol-Davani ◽  
Cheyenne Graves ◽  
Atalie Gomez ◽  
Mohammadebrahim Fazel Valipour

The importance of considering the compound effects of multiple hazards has increased in recent years due to their catastrophic impacts on human lives and property. Compound effects correspond to events with multiple concurrent or consecutive drivers, e.g., heavy storms, coastal flooding, high tides, and sea level rise (SLR). There is a recent evidence on inundation caused by SLR-driven groundwater rise, and there is a distinct knowledge gap in understanding the compound inundation effects of this phenomenon considering the important hydrologic and hydraulic considerations under compound events. To fill this knowledge gap, we developed a novel analytical framework to understand the movements of the surface flow under typical precipitation events considering their interaction with uprising groundwater and SLR in a coastal watershed located in Oakland Flatlands, CA, USA, home to several disadvantaged communities. This modelling approach simulates the dynamics of compound flooding in two dimensions of the earth surface in a fine resolution, which is critical for devising proper flood management strategies. The reason to focus on disadvantaged coastal communities is that such communities typically encounter disproportionate environmental injustices due to the lack of sufficient drainage capacity in their infrastructure. Our results show that by considering the compound effect of SLR, groundwater inundation and precipitation flooding, the drainage capacity of infrastructure will be substantially exceeded, such that over 700 acres of the built infrastructure could be flooded. This is a considerable increase compared to scenarios that do not consider compound effect, or scenarios that consider inappropriate combinations of driving factors. In sum, our results highlight the significance of considering compound effects in the coastal inundation analyses, with a particular emphasis on the role of groundwater rise.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 766
Author(s):  
Basil Gomez

The Mānā Plain is a land apart, buffered from oceanographic influences by ~3–35 m high backshore deposits, and drained by an intricate, >100-y-old ditch system and modern, large-capacity pumps. Quantifying present and prospective inputs and outputs for the hydrologic landscape suggests that, although sea-level rise (SLR) will begin to impact ditch system operations in 2040, transient, event-based flooding caused by rainfall, not SLR induced, multi-mechanism flooding, will continue to pose the most immediate threat. This is because as sea level rises the ability of gravity flows to discharge storm runoff directly into the ocean will diminish, causing floodwater to pond in low-lying depressions. Estimates of the volume of water involved suggests the risk of flooding from surface water is likely to extend to 5.45 km2 of land that is presently ≤ 1 m above sea level. This land will not be permanently inundated, but weeks of pumping may be required to remove the floodwater. Increasing pumping capacity and preserving some operational ability to discharge storm runoff under the influence of gravity will enhance the ditch system’s resilience to SLR and ensure it continues to fulfill its primary functions, of maintaining the water table below the root zone and diverting storm runoff away from farmland, at least until the end of this century.


2019 ◽  
Vol 35 (1) ◽  
pp. 143 ◽  
Author(s):  
Jennifer M. Jacobs ◽  
Jayne F. Knott ◽  
Jo S. Daniel ◽  
Paul Kirshen

2020 ◽  
Vol 8 (9) ◽  
pp. 725
Author(s):  
Ziyu Chen ◽  
Philip Orton ◽  
Thomas Wahl

Gated storm surge barriers are being studied by the United States Army Corps of Engineers (USACE) for coastal storm risk management for the New York City metropolitan area. Surge barrier gates are only closed when storm tides exceeding a specific “trigger” water level might occur in a storm. Gate closure frequency and duration both strongly influence the physical and environmental effects on enclosed estuaries. In this paper, we use historical observations to represent future storm tide hazard, and we superimpose local relative sea-level rise (SLR) to study the potential future changes to closure frequency and duration. We account for the effects of forecast uncertainty on closures, using a relationship between past storm surge and forecast uncertainty from an operational ensemble forecast system. A concern during a storm surge is that closed gates will trap river streamflow and could cause a new problem with trapped river water flooding. Similarly, we evaluate this possibility using historical data to represent river flood hazard, complemented by hydrodynamic model simulations to capture how waters rise when a hypothetical barrier is closed. The results show that SLR causes an exponential increase of the gate closure frequency, a lengthening of the closure duration, and a rising probability of trapped river water flooding. The USACE has proposed to prevent these SLR-driven increases by periodically raising the trigger water level (e.g., to match a prescribed storm return period). However, this alternative management approach for dealing with SLR requires waterfront seawalls to be raised at a high, and ongoing, additional future expense. For seawalls, costs and benefits will likely need to be weighed on a neighborhood-by-neighborhood basis, and in some cases retreat or other non-structural options may be preferable.


Author(s):  
Matthew W. Betts ◽  
David W. Black ◽  
Brian Robinson ◽  
Arthur Spiess ◽  
Victor D. Thompson

The northern Gulf of Maine (NGOM) and its watershed have attracted humans for the last 12,500 years (cal BP), and evidence of Palaeoindian marine economies is well established in adjacent regions by ca. 8000 cal BP. Sea level rise (SLR) has obscured understandings of early coastal adaptations, although underwater research and some near-shore sites are providing important insights. The earliest evidence from surviving shell middens dates to ca. 5000 cal BP, and reveals that shellfish collecting and the seasonal exploitation of benthopelagic fish were important throughout the Late Maritime Archaic and Maritime Woodland periods. However, significant economic shifts have occurred. In particular, a Late Archaic focus on marine swordfish hunting was replaced by a dramatic increase in inshore seal hunting in the Maritime Woodland period. After ca. 3100 cal BP, inshore fishing for cod, flounder, sculpin, sturgeon and other species intensified. During the Late Maritime Woodland period, shellfish exploitation declined somewhat and the hunting of small seals, and, in some areas, white-tailed deer, increased sharply. The extent and nature of coastal economies in the NGOM was controlled, in part, by SLR, increasing tidal amplitude, and concomitant changes in surface-water temperatures, in tandem with broad regional cultural shifts.


2021 ◽  
Author(s):  
Joost Delsman ◽  
Gualbert Oude Essink ◽  
Tobias Mulder ◽  
Sebastian Huizer

<p>The coastal zone of the Netherlands is the densely populated economic heartland of the Netherlands. This low-lying area is predominantly located below current mean sea level. Groundwater in large parts of the Dutch coastal zone is saline, having infiltrated during Holocene transgressions. This saline groundwater is now slowly moving upward, driven by artificially lowered drainage levels and resulting land subsidence. Coastal groundwater in the Netherlands is vulnerable to climate change and rising sea levels, as groundwater levels rise, fresh groundwater reserves decrease, and surface water is salinized by exfiltrating saline groundwater.</p><p>We developed a high-resolution nationwide 3D fresh-salt groundwater flow and transport model to assess effects of climate change and sea level rise on groundwater salinization in the Netherlands. The fully scripted modelling workflow includes a 3D multiple indicator kriging interpolation of all available salinity measurements, that accounted for uncertainty in both measurements and interpolation. The developed model used a parallellized version of the SEAWAT model code to allow otherwise time-consuming calculations. It links to the existing national hydrological modelling framework to allow calculation of climate change effects on surface water supply and demand and agricultural damage. We used the resulting modelling framework to calculate groundwater effects of different climate change and sea level rise scenarios up to 2100.</p><p>Results show significant effects of climate change and especially sea level rise on coastal groundwater. Significant head increase (> 5% of SLR) is experienced in shallow aquifers between 2 to 10 km inland, dependent on the varying hydrogeological settings along the Dutch coast. In deeper aquifers, head increase generally propagates further, to up to 15 km inland. Through the combined effects of head increase and the inward movement of saline groundwater, salt loads to surface water increase over a significantly larger zone, extending to 25 km inward. Results signify the importance of including the long-term displacement of brackish and saline groundwater when assessing coastal groundwater effects of climate change and sea level rise.</p>


2015 ◽  
Vol 129 (1-2) ◽  
pp. 281-294 ◽  
Author(s):  
Hannah M. Cooper ◽  
Caiyun Zhang ◽  
Donna Selch

Sign in / Sign up

Export Citation Format

Share Document