Coastal Adaptations to the Northern Gulf of Maine and Southern Scotian Shelf

Author(s):  
Matthew W. Betts ◽  
David W. Black ◽  
Brian Robinson ◽  
Arthur Spiess ◽  
Victor D. Thompson

The northern Gulf of Maine (NGOM) and its watershed have attracted humans for the last 12,500 years (cal BP), and evidence of Palaeoindian marine economies is well established in adjacent regions by ca. 8000 cal BP. Sea level rise (SLR) has obscured understandings of early coastal adaptations, although underwater research and some near-shore sites are providing important insights. The earliest evidence from surviving shell middens dates to ca. 5000 cal BP, and reveals that shellfish collecting and the seasonal exploitation of benthopelagic fish were important throughout the Late Maritime Archaic and Maritime Woodland periods. However, significant economic shifts have occurred. In particular, a Late Archaic focus on marine swordfish hunting was replaced by a dramatic increase in inshore seal hunting in the Maritime Woodland period. After ca. 3100 cal BP, inshore fishing for cod, flounder, sculpin, sturgeon and other species intensified. During the Late Maritime Woodland period, shellfish exploitation declined somewhat and the hunting of small seals, and, in some areas, white-tailed deer, increased sharply. The extent and nature of coastal economies in the NGOM was controlled, in part, by SLR, increasing tidal amplitude, and concomitant changes in surface-water temperatures, in tandem with broad regional cultural shifts.

Energy ◽  
2019 ◽  
Vol 187 ◽  
pp. 115942 ◽  
Author(s):  
Boma Kresning ◽  
M. Reza Hashemi ◽  
Simon P. Neill ◽  
J. A. Mattias Green ◽  
Huijie Xue

The Holocene ◽  
2002 ◽  
Vol 12 (4) ◽  
pp. 383-389 ◽  
Author(s):  
W. Roland Gehrels ◽  
Daniel F. Belknap ◽  
Stuart Black ◽  
Rewi M. Newnham

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 766
Author(s):  
Basil Gomez

The Mānā Plain is a land apart, buffered from oceanographic influences by ~3–35 m high backshore deposits, and drained by an intricate, >100-y-old ditch system and modern, large-capacity pumps. Quantifying present and prospective inputs and outputs for the hydrologic landscape suggests that, although sea-level rise (SLR) will begin to impact ditch system operations in 2040, transient, event-based flooding caused by rainfall, not SLR induced, multi-mechanism flooding, will continue to pose the most immediate threat. This is because as sea level rises the ability of gravity flows to discharge storm runoff directly into the ocean will diminish, causing floodwater to pond in low-lying depressions. Estimates of the volume of water involved suggests the risk of flooding from surface water is likely to extend to 5.45 km2 of land that is presently ≤ 1 m above sea level. This land will not be permanently inundated, but weeks of pumping may be required to remove the floodwater. Increasing pumping capacity and preserving some operational ability to discharge storm runoff under the influence of gravity will enhance the ditch system’s resilience to SLR and ensure it continues to fulfill its primary functions, of maintaining the water table below the root zone and diverting storm runoff away from farmland, at least until the end of this century.


2021 ◽  
Author(s):  
Krysten Rutherford ◽  
Katja Fennel ◽  
Dariia Atamanchuk ◽  
Douglas Wallace ◽  
Helmuth Thomas

Abstract. Continental shelves are thought to be affected disproportionately by climate change and are a large contributor to global air-sea carbon dioxide (CO2) fluxes. It is often reported that low-latitude shelves tend to act as net sources of CO2 whereas mid- and high-latitude shelves act as net sinks. Here, we combine a high-resolution regional model with surface water time-series and repeat transect observations from the Scotian Shelf, a mid-latitude region in the northwest North Atlantic, to determine what processes are driving the temporal and spatial variability of partial pressure of CO2 (pCO2). In contrast to the global trend, the Scotian Shelf acts as a net source. Surface pCO2 undergoes a strong seasonal cycle associated with both a strong biological drawdown of Dissolved Inorganic Carbon (DIC) in spring, and pronounced effects of temperature, which ranges from 0 °C in the winter to near 20 °C in the summer. Throughout the summer, events with low surface-water pCO2 occur nearshore associated with coastal upwelling. This effect of upwelling on pCO2 is also in contrast to the general assumption that upwelling increases surface pCO2 by delivering DIC-enriched water to the surface. Aside from these localized events, pCO2 is relatively uniform across the shelf. Our model agrees with regional observations, reproduces seasonal patterns of pCO2, and simulates annual outgassing of CO2 from the ocean of +1.9 ± 0.2 mol C m−2 yr−1 for the Scotian Shelf, net neutral CO2 flux of −0.09 ± 0.16 mol C m−2 yr−1 for the Gulf of Maine and uptake by the ocean of −0.88 ± 0.4 mol C m−2 yr−1 for the Grand Banks.


2021 ◽  
Vol 18 (23) ◽  
pp. 6271-6286
Author(s):  
Krysten Rutherford ◽  
Katja Fennel ◽  
Dariia Atamanchuk ◽  
Douglas Wallace ◽  
Helmuth Thomas

Abstract. Continental shelves are thought to be affected disproportionately by climate change and are a large contributor to global air–sea carbon dioxide (CO2) fluxes. It is often reported that low-latitude shelves tend to act as net sources of CO2, whereas mid- and high-latitude shelves act as net sinks. Here, we combine a high-resolution regional model with surface water time series and repeat transect observations from the Scotian Shelf, a mid-latitude region in the northwest North Atlantic, to determine what processes are driving the temporal and spatial variability of partial pressure of CO2 (pCO2) on a seasonal scale. In contrast to the global trend, the Scotian Shelf acts as a net source. Surface pCO2 undergoes a strong seasonal cycle with an amplitude of ∼ 200–250 µatm. These changes are associated with both a strong biological drawdown of dissolved inorganic carbon (DIC) in spring (corresponding to a decrease in pCO2 of 100–200 µatm) and pronounced effects of temperature, which ranges from 0 ∘C in the winter to near 20 ∘C in the summer, resulting in an increase in pCO2 of ∼ 200–250 µatm. Throughout the summer, events with low surface water pCO2 occur associated with coastal upwelling. This effect of upwelling on pCO2 is also in contrast to the general assumption that upwelling increases surface pCO2 by delivering DIC-enriched water to the surface. Aside from these localized events, pCO2 is relatively uniform across the shelf. Our model agrees with regional observations, reproduces seasonal patterns of pCO2, and simulates annual outgassing of CO2 from the ocean of +1.7±0.2 mol C m−2 yr−1 for the Scotian Shelf, net uptake of CO2 by the ocean of -0.5±0.2 mol C m−2 yr−1 for the Gulf of Maine, and uptake by the ocean of -1.3±0.3 mol C m−2 yr−1 for the Grand Banks.


Author(s):  
Jayne F. Knott ◽  
Jo Sias Daniel ◽  
Jennifer M. Jacobs ◽  
Paul Kirshen

Sea level in coastal New England is projected to rise 3.9–6.6 ft (1.2–2.0 m) by the year 2100. Many climate-change vulnerability and adaptation studies have investigated surface-water flooding from sea-level rise (SLR) on coastal-road infrastructure, but few have focused on rising groundwater. Groundwater modeling in New Hampshire’s Seacoast Region has shown that SLR-induced groundwater rise will occur three to four times farther inland than surface-water flooding, potentially impacting 23% of the region’s roads. Pavement service-life has been shown to decrease when the unbound layers become saturated. In areas where groundwater is projected to rise with SLR, pavements with groundwater 5.0 ft (1.5 m) deep or less are at risk of premature failure as groundwater moves into the pavement’s underlying unbound layers. In this study, groundwater hydrology and multi-layer elastic pavement analysis were used to identify two case-study sites in coastal New Hampshire that are predicted to experience pavement service-life reduction caused by SLR-induced groundwater rise. Various pavement structures were evaluated to determine adaptation feasibility and costs to maintain the designed service-life in the face of rising groundwater. This investigation shows that relatively simple pavement structural modifications to the base and asphalt concrete (AC) layers of a regional corridor can eliminate the 80% to 90% service-life reduction projected with 1.0 ft SLR (year 2030) and will delay pavement inundation by 20 years. Pavements with adequate base-layer materials and thickness require only AC thickness modification to avoid premature pavement failure from SLR-induced groundwater rise.


1983 ◽  
Vol 19 (3) ◽  
pp. 325-336 ◽  
Author(s):  
R. N. Oldale ◽  
L. E. Wommack ◽  
A. B. Whitney

AbstractA submerged delta of the Merrimack River, located offshore between Cape Ann, Massachusetts, and the New Hampshire border, indicates a postglacial low relative see-level stand of about −47 m. The low stand is inferred to date to 10,500 yr B.P., but a lack of age control makes this assignment uncertain. A curve based on a late Wisconsinan, high relative sea-level stand of +32m at 13,000 yr B.P., a low stand of −47m at 10,500 yr B.P., and younger radiocarbon dates related to sea-level rise indicates an early postglacial crustal rise of at least 5 m per century.


1960 ◽  
Vol 17 (2) ◽  
pp. 181-197 ◽  
Author(s):  
Dean F. Bumpus

The returns from the 35,000 drift bottles launched in the Gulf of Maine area since 1919 have been analyzed to determine the annual cycle of surface drift. The source of surface flow into the Bay of Fundy expands from a minimum during January in the offing of the eastern side of the bay to a maximum in May which includes most of Georges Bank, the Gulf of Maine and the southwestern Scotian Shelf, then commencing in September gradually contracts toward the minimum.Secular variations in the removal of surface water from the Bay of Fundy, indicative of changes in the Maine eddy, were noted during 1957 and 1958.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucy Chisholm ◽  
Tracey Talbot ◽  
William Appleby ◽  
Benita Tam ◽  
Robin Rong

A scientific scenario paper was prepared ahead of the Gulf of Maine (GOM) 2050 International Symposium to review and summarize possible weather-related and sea-level changes within the GOM as a result of climate change. It is projected that the GOM will experience warming temperatures, continued sea-level rise, and changes to storm characteristics and related elements such as precipitation and waves in the intermediate term, by approximately 2050. Coastal communities within the GOM region are particularly vulnerable to the anticipated impacts of climate change. This article aims to provide context on some of the consequential impacts that may occur from the changes projected within the area.


Sign in / Sign up

Export Citation Format

Share Document