Assessing Climate Change Impact on Asphalt Binder Grade Selection and its Implications

Author(s):  
Surya T. Swarna ◽  
Kamal Hossain ◽  
Harshdutta Pandya ◽  
Yusuf A. Mehta

Anthropogenic climate change is having and will continue to have unpredictable effects on Canadian weather. Trends in average annual temperatures have been rapidly increasing over the last 50 years. The severe climatic variations in Canada are in line with global changes in climate occurring as a result of increased greenhouse gas concentrations in the atmosphere. Under the current CO2 emission scenarios, scientists predict the climate trends to further intensify in the near future. It is well known that asphalt binder is highly sensitive to climate factors. For this reason, reviewing asphalt binder grade is a vital step, and can help decelerate pavement deterioration. The objective of this study was to assess the change in asphalt binder grade for the future climate and to determine the influence of change in binder grade on the performance of pavements in Canada. To achieve this, the analysis was carried out in five phases. In the first phase, statistically downscaled climate change models were gathered from the Pacific Climate Impacts Consortium database. In the second phase, the temperature and precipitation data were extracted for the selected locations in southern Canada. In the third phase, the asphalt binder grade was determined for future climate data. In the fourth phase, the pavement materials, traffic, and structural data were collected from the Long-Term Pavement Performance database. Lastly, the pavement performance with the base binder and the upgraded binder were assessed using AASHTOware Mechanistic–Empirical Pavement Design. The results reemphasize the necessity of upgrading the asphalt binder grade in various provinces of Canada.

2021 ◽  
Vol 14 (8) ◽  
pp. 5269-5284
Author(s):  
Matthias Mengel ◽  
Simon Treu ◽  
Stefan Lange ◽  
Katja Frieler

Abstract. Attribution in its general definition aims to quantify drivers of change in a system. According to IPCC Working Group II (WGII) a change in a natural, human or managed system is attributed to climate change by quantifying the difference between the observed state of the system and a counterfactual baseline that characterizes the system's behavior in the absence of climate change, where “climate change refers to any long-term trend in climate, irrespective of its cause” (IPCC, 2014). Impact attribution following this definition remains a challenge because the counterfactual baseline, which characterizes the system behavior in the hypothetical absence of climate change, cannot be observed. Process-based and empirical impact models can fill this gap as they allow us to simulate the counterfactual climate impact baseline. In those simulations, the models are forced by observed direct (human) drivers such as land use changes, changes in water or agricultural management but a counterfactual climate without long-term changes. We here present ATTRICI (ATTRIbuting Climate Impacts), an approach to construct the required counterfactual stationary climate data from observational (factual) climate data. Our method identifies the long-term shifts in the considered daily climate variables that are correlated to global mean temperature change assuming a smooth annual cycle of the associated scaling coefficients for each day of the year. The produced counterfactual climate datasets are used as forcing data within the impact attribution setup of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a). Our method preserves the internal variability of the observed data in the sense that factual and counterfactual data for a given day have the same rank in their respective statistical distributions. The associated impact model simulations allow for quantifying the contribution of climate change to observed long-term changes in impact indicators and for quantifying the contribution of the observed trend in climate to the magnitude of individual impact events. Attribution of climate impacts to anthropogenic forcing would need an additional step separating anthropogenic climate forcing from other sources of climate trends, which is not covered by our method.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


Author(s):  
Guillaume Rohat ◽  
Stéphane Goyette ◽  
Johannes Flacke

Purpose Climate analogues have been extensively used in ecological studies to assess the shift of ecoregions due to climate change and the associated impacts on species survival and displacement, but they have hardly been applied to urban areas and their climate shift. This paper aims to use climate analogues to characterize the climate shift of cities and to explore its implications as well as potential applications of this approach. Design/methodology/approach The authors propose a methodology to match the current climate of cities with the future climate of other locations and to characterize cities’ climate shift velocity. Employing a sample of 90 European cities, the authors demonstrate the applicability of this method and characterize their climate shift from 1951 to 2100. Findings Results show that cities’ climate shift follows rather strictly north-to-south transects over the European continent and that the average southward velocity is expected to double throughout the twenty-first century. These rapid shifts will have direct implications for urban infrastructure, risk management and public health services. Originality/value These findings appear to be potentially useful for raising awareness of stakeholders and urban dwellers about the pace, magnitude and dynamics of climate change, supporting identification of the future climate impacts and vulnerabilities and implementation of readily available adaptation options, and strengthening cities’ cooperation within climate-related networks.


2013 ◽  
Vol 6 (2) ◽  
pp. 3349-3380 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
P. H. Garthwaite ◽  
K. Fraedrich ◽  
F. Lunkeit ◽  
...  

Abstract. Many applications in the evaluation of climate impacts and environmental policy require detailed spatio-temporal projections of future climate. To capture feedbacks from impacted natural or socio-economic systems requires interactive two-way coupling but this is generally computationally infeasible with even moderately complex general circulation models (GCMs). Dimension reduction using emulation is one solution to this problem, demonstrated here with the GCM PLASIM-ENTS. Our approach generates temporally evolving spatial patterns of climate variables, considering multiple modes of variability in order to capture non-linear feedbacks. The emulator provides a 188-member ensemble of decadally and spatially resolved (~ 5° resolution) seasonal climate data in response to an arbitrary future CO2 concentration and radiative forcing scenario. We present the PLASIM-ENTS coupled model, the construction of its emulator from an ensemble of transient future simulations, an application of the emulator methodology to produce heating and cooling degree-day projections, and the validation of the results against empirical data and higher-complexity models. We also demonstrate the application to estimates of sea-level rise and associated uncertainty.


2020 ◽  
Author(s):  
Sanne Muis ◽  
Maialen Irazoqui Apecechea ◽  
Job Dullaart ◽  
Joao de Lima Rego ◽  
Kristine S. Madsen ◽  
...  

<p>Climate change will lead to increases in the flood risk in low-lying coastal areas. Understanding the magnitude and impact of such changes is vital to design adaptive strategies and create awareness. In  the  context  of  the  CoDEC  project  (Coastal  Dataset  for  Evaluation  of  Climate  impact),  we  developed a consistent European dataset of extreme sea levels, including climatic changes from 1979 to 2100. To simulate extreme sea levels, we apply the Global Tide and Surge Model v3.0 (GTSMv3.0), a 2D hydrodynamic model with global coverage. GTSM has a coastal resolution of 2.5 km globally and 1.25 km in Europe, and incorporates dynamic interactions between sea-level  rise,  tides  and  storm surges. Validation of the dataset shows a good performance with a mean bias of 0-.04 m for the 1 in 10-year water levels. When analyzing changes in extreme sea levels for the future climate scenarios, it is projected that by the end of the century the 1 in 10-year water levels are likely to increase up to 0.5 m. This change is largely driven by the increase in mean sea levels, although locally changes in storms surge and interaction with tides can amplify the impacts of sea-level rise with changes up to 0.2 m in the 1 in 10-year water level.</p><p>The CoDEC dataset will be made accessible through a web portal on Copernicus Climate Data Store (C3S). The dataset includes a set of Climate Impact Indicators (CII’s) and new tools designed to evaluate the impacts of climate change on different sectors and industries. This data service will support European coastal sectors to adapt to changes in sea levels associated with climate change. In this presentation we will also demonstrate how the C3S coastal service can be used to enhance the understanding of local climate impacts.</p>


2020 ◽  
Author(s):  
Kim M. Cobb

<p>The study of past climate trends, variability, and extremes has yielded unique insights into Earth’s changing climate, yet paleoclimate science must overcome a number of key challenges to maximize its utility in a century defined by accelerating climate change. First, the paleoclimate archive itself is at grave risk, given that i) many records end in the late 20<sup>th</sup> century, and no concerted efforts exist to extend them to the present-day, and ii) many paleoclimate archives are disappearing under continued climate change and other forms of human disturbance. Second, many paleoclimate records are comprised of oxygen isotopes, yet the coordinated, multi-scale observational and modeling infrastructures required to unravel the mechanisms governing water isotope variability are as yet underdeveloped. Lastly, in part owing to the aforementioned deficiencies, paleoclimate data assimilation efforts remain fraught with large uncertainties, despite their promise in constraining many aspects of future climate impacts, including extreme events and hydrological trends and variability. Paleoclimate science for the 21<sup>st</sup> century requires deep investments in the full integration of paleoclimate data and approaches into frameworks for climate risk and hazard assessments. In that sense, paleoclimate scientists will continue to play a key role in the communication of climate change science to key stakeholders, including the general public. Their understanding of the Earth system also equips them to contribute valuable insights to teams comprised of researchers, practitioners, and  decision-makers charged with leveraging science to inform solutions, in service to society.</p>


2020 ◽  
Author(s):  
Wei Yuan ◽  
Shuang-ye Wu ◽  
Shugui Hou

<p>This study aims to establish future vegetation changes in the east and central of northern China (ECNC), an ecologically sensitive region in the transition zonal from humid monsoonal to arid continental climate. The region has experienced significant greening in the past several decades. However, few studies exist on how vegetation will change with future climate change, and great uncertainties exist due to complex, and often spatially non-stationary, relationships between vegetation and climate. In this study, we first used historical NDVI and climate data to model this spatially variable relationship with Geographically Weighted Logit Regression. We found that temperature and precipitation could explain, on average, 43% of NDVI variance, and they could be used to model NDVI fairly well. We then establish future climate change using the output of 11 CMIP6 models for the medium (SSP245) and high (SSP585) emission scenarios for the mid-century (2041-2070) and late-century (2071-2100). The results show that for this region, both temperature and precipitation will increase under both scenarios. By late-century under SSP585, precipitation is projected to increase by 25.12% and temperature is projected to increase 5.87<sup>o</sup>C in ECNC. Finally, we used future climate conditions as input for the regression models to project future vegetation (indicated by NDVI). We found that NDVI will increase under climate change. By mid-century, the average NDVI in ECNC will increase by 0.024 and 0.021 under SSP245 and SSP585. By late-century, it will increase by 0.016 and 0.006 under SSP245 and SSP585 respectively. Although NDVI is projected to increase, the magnitude of increase is likely to diminish with higher emission scenarios, possibly due to the benefit of precipitation increase being gradually encroached by the detrimental effects of temperature increase. Moreover, despite the overall NDVI increase, the area likely to suffer vegetation degradation will also expands, particularly in the western part of ECNC. With higher emissions and later into the century, region with low NDVI is likely to shift and/or expand north-forward. Our results could provide important information on possible vegetation changes, which could help to develop effective management strategies to ensure ecological and economic sustainability in the future.</p>


2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


Sign in / Sign up

Export Citation Format

Share Document