Impact of Concrete Mix Ingredients and Surface Treatments on Epoxy Overlay Performance

Author(s):  
Abul Fazal Mazumder ◽  
Harsha Amunugama ◽  
Upul Attanayake

Epoxy overlays are applied on bridge decks after curing concrete in patches and repairs for 28 days. A tensile bond pull-off strength of at least 250 pounds per square inch (psi) is expected from a properly applied overlay. Even though the overlay performance at room temperature is mostly satisfactory, the performance at elevated temperatures is not convincing. The degradation of mechanical and adhesion properties of epoxy, shear stress at the concrete/overlay interface caused by thermal incompatibility, and the interface moisture vapor pressure are the commonly cited parameters for poor bond strength at elevated temperatures. A combined effect of these parameters results in the most unfavorable failure mode (which is bond failure at the concrete/overlay interface) at a strength lower than the specified limit of 250 psi. The moisture migration through concrete depends on many factors including moisture content along the depth of concrete, pore microstructure, exposure condition, and drying period. This study investigated the impact of concrete mix ingredients and surface treatments on the thin epoxy overlay bond strength. The results show that the use of concrete mixes with slag and penetrating sealant pretreatment improves the bond strength.

Author(s):  
Abul Fazal Mazumder ◽  
Upul Attanayake ◽  
Neal S. Berke

Thin epoxy overlays are used for improving the condition and extending the service life of bridge decks. The tensile bond pull-off strength, evaluated as per ASTM C1583, is used as the performance indicator. A failure in the substrate with a tensile strength of 250 pounds per square inch (psi) or greater is considered acceptable. However, the performance of in-service bridge decks when evaluated shows inconsistent results. Such studies failed to record and correlate the parameters that influence overlay performance during testing to clarify the observed variations. Laboratory studies by several researchers have documented a distinct performance difference when the overlays are exposed to room temperatures in comparison with elevated temperatures. However, the most influential parameters, such as the variation of substrate moisture against temperature and epoxy softening under elevated temperatures, were not measured and correlated to the observed performance. This study was initiated to provide clarification of the observed performance differences by evaluating the impact of concrete age at the time of epoxy application, concrete mix ingredients, exposure conditions, concrete microstructure development, and substrate moisture and temperature on the performance of two epoxy overlays. Experimental results confirm that (i) the performance of epoxy overlays improves when the concrete mix contains slag and (ii) substrate moisture vapor pressure and epoxy softening under elevated temperature negatively affect the overlay performance.


2019 ◽  
Vol 13 (3) ◽  
pp. 200-207
Author(s):  
Vikram M. Belkhode ◽  
Sharayu V. Nimonkar ◽  
S. R. Godbole ◽  
Pranali Nimonkar ◽  
Seema Sathe ◽  
...  

Background. Dental porcelain has excellent esthetics in combination with biocompatibility and is one of the most commonly used restorative materials. Its low tensile strength remains a major drawback. The porcelain-fused-to-metal restorations have been introduced to increase the fracture resistance of dental porcelain. The aim of this study was to evaluate the effect of different surface treatments on the bond strength of a non-precious alloy to ceramic. Methods. The present cross-sectional observational study was conducted with forty samples of cobalt‒chromium that were fabricated with porcelain interposed between the two metal test pieces. The metal was subjected to combinations of different surface treatments. The samples group A (n=10) were not subjected to any surface treatments. Group B samples underwent sandblasting and surface grinding. Group C samples were subjected to sandblasting, surface grinding and degassing; and group D samples underwent sandblasting, surface grinding, ultrasonic cleaning and degassing. The tensile bond strength was measured in a universal testing machine, and a scanning electron microscope (SEM) was used to obtain images of the samples after surface treatment to determine the surface irregularities and after the debonding of the samples for the type of the bond failure. ANOVA was used for the statistical analysis. Results. The results showed significant variations in the tensile bond strength between the four groups (F=251.05, P=0.000). The SEM images of group A showed no surface irregularities; group C samples exhibited surface irregularities more than those in group B. Group D had the highest surface irregularities. SEM evaluations showed a statistically significant difference in the type of bond failure (P<0.001). Conclusion. Based on the results of this study, it can be concluded that the surface treatments on the metal increased the bond strength of the metal‒ceramic interface significantly. A combination of sandblasting, surface grinding and ultrasonic cleaning, followed by degassing, resulted in the highest tensile bond strength.


Holzforschung ◽  
2020 ◽  
Vol 74 (4) ◽  
pp. 372-381
Author(s):  
Saara Hautamäki ◽  
Michael Altgen ◽  
Daniela Altgen ◽  
Erik Larnøy ◽  
Tuomas Hänninen ◽  
...  

AbstractIn built environments the combustibility of wood is a great concern, which limits the use of wood as a building material due to legislation. The reaction-to-fire properties of wood can be altered with the use of fire-retardant chemicals, and most of the commonly used fire retardants already have a long history of use. However, only limited information is available on the impact of different fire retardants on the adhesion properties of wood. Additionally, comparative studies between chemicals from different groups of fire retardants is scarce. The objective of this study was to investigate and compare the effects of two commonly used fire retardants, sodium silicate (SS) and diammonium phosphate (DAP), on veneer properties, the focus being especially on thermal behavior and adhesion. Thermal properties and combustibility were studied using thermogravimetric analysis (TGA), flame test and calorimetry. Glue bond strength was analyzed with an automated bonding evaluation system (ABES) and the leaching of chemicals was determined according to EN84. Additionally, the surface characteristics of modified veneers were imaged with scanning electron microscopy (SEM). Results revealed notable differences in the thermal properties of SS and DAP, with DAP having better fire-retardant performance in all thermal testing. SS also affected thermal properties and combustibility of modified veneers, but the effect was only moderate compared to DAP. Neither SS or DAP had any significant resistance against leaching but ABES testing showed a notable increase in the glue bond strength of DAP modified veneers.


2019 ◽  
Vol 10 (1) ◽  
pp. 90-109 ◽  
Author(s):  
Hala Mohamed Elkady ◽  
Ahmed M. Yasien ◽  
Mohamed S. Elfeky ◽  
Mohamed E. Serag

Purpose This paper aims to inspect the effect of indirect elevated temperature on the mechanical performance of nano silica concrete (NSC). The effect on both compressive and bond strengths is studied. Pre- and post-exposure to elevated temperature ranges of 200 to 600°C is examined. A range covered by three percentages of 1.5, 3 and 4.5 per cent nano silica (NS) in concrete mixes is tested. Design/methodology/approach Pre-exposure mechanical tests (normal conditions – room temperature), using 3 per cent NS in the concrete mix, led to the highest increase in both compressive and bond strengths (43 per cent and 38.5 per cent, respectively), compared to the control mix without NS (based on 28-day results). It is worth noticing that adding NS to the concrete mixes does not have a significant effect on improving early-age strength. Besides, permeability tests are performed on NSC with different NS ratios. NS improved the concrete permeability for all tested percentages of NS. The maximum reduction is accompanied by the maximum percentage used (4.5 per cent NS in the NSC mix), reducing permeability to half the value of the concrete mix without NS. As for post-exposure to elevated-temperature mechanical tests, NSC with 1.5 per cent NS exhibited the lowest loss in strength owing to indirect heat exposure of 600°C; the residual compressive and bond strengths are 73 per cent and 35 per cent, respectively. Findings The dispersion technique of NS has a key role in NSC-distinguished mechanical performance with NSC having lower NS percentages. NS significantly improved bond strength. NS has a remarkable effect on elevated temperature endurance. The bond strength of NSC exposed to elevated temperatures suffered faster deterioration than compressive strength of the exposed NSC. Research limitations/implications A special scale factor needs to be investigated for the NSC. Originality/value Although a lot of effort is placed in evaluating the benefits of using nano materials in structural concrete, this paper presents one of the first outcomes of the thermal effects on concrete mixes with NS as a partial cement replacement.


Author(s):  
Sílvia Fontes Do Amaral Pereira

O objetivo do presente estudo in vitro foi verificar, através de teste de cisalhamento, a resistência de união da liga Wironia®light, à base de níquel-cromo sem berílio, sujeita a diferentes tratamentos de superfície, às cerâmicas Vita VM13 e Noritake. Foram confeccionados oitenta espécimes cilíndricos metálicos, com o auxílio de uma matriz de aço, nas dimensões de 4 mm de diâmetro por 4 mm de altura. Os espécimes foram divididos em oito grupos (n=10), de acordo com o tipo de tratamento superficial aplicado à liga metálica e com o tipo de cerâmica testada. Estes foram avaliados de acordo com os critérios de resistência ao cisalhamento e, com o auxílio de microscopia óptica, foi avaliada a área de cerâmica remanescente aderida ao metal após a fratura. Os corpos-de-prova do G6 (fabricados em Cerâmica Noritake com jateamento-26,401 ± 11,637 MPa) apresentaram maior resistência ao cisalhamento (p> 0,05) enquanto que os menores valores foram registrados no G4 (Cerâmica Vita com utilização de broca-13,440 ± 7,766 MPa). G6 (19425,4 μm2) apresentou a maior área de cerâmica aderida ao metal (p> 0,05) enquanto que o G4 (2310,2 μm2) apresentou a menor área. Concluiu-se que G6 obteve os valores mais altos de resistência ao cisalhamento e de remanescente cerâmico aderido à superfície metálica enquanto que o G4 obteve os valores mais baixos. Descritores: Restaurações metalo-cerâmicas; ligas de níquel-cromo;porcelana dentária.


Author(s):  
Veber Luiz Bomfim Azevedo ◽  
Eduardo Fernandes Castro ◽  
Jean‐Jacques Bonvent ◽  
Oswaldo Scopin Andrade ◽  
Fábio Dupart Nascimento ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 975
Author(s):  
Antonio Copak ◽  
Vlatka Jirouš-Rajković ◽  
Nikola Španić ◽  
Josip Miklečić

Oriented strand board (OSB) is a commonly used structural wood-based panel for walls and roof siding, but recently the industry has become interested in OSB as a substrate for indoor and outdoor furniture. Particleboard is mainly used in furniture productions and has become popular as a construction material due to its numerous usage possibilities and inexpensive cost. Moisture is one of the most important factors affecting wood-based panel performance and the post-treatment conditions affected their affinity to water. When OSB and particleboard are used as substrates for coatings, their surface characteristics play an important role in determining the quality of the final product. Furthermore, roughness can significantly affect the interfacial phenomena such as adsorption, wetting, and adhesion which may have an impact on the coating performance. In this research particleboard and OSB panels were sanded, re-pressed and IR heated and the influence of surface treatments on hardness, roughness, wetting, water, and water vapour absorption was studied. Results showed that sanding improved the wetting of particleboard and OSB with water. Moreover, studied surface treatments increased water absorption and water penetration depth of OSB panels, and re-pressing had a positive effect on reducing the water vapour absorption of particleboard and OSB panels.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amr M. Elnaghy ◽  
Ayman Mandorah ◽  
Ali H. Hassan ◽  
Alaa Elshazli ◽  
Shaymaa Elsaka

Abstract Background To evaluate the effect of surface treatments on the push-out bond strength of Biodentine (BD) and white mineral trioxide aggregate (WMTA) to fiber posts. Methods Two brands of fiber posts were used: Reblida post; RP and RelyX post; RX. Each type of post (n = 80/group) was divided into four groups (n = 20/group) and exposed to surface treatment as follows: Control (no treatment), sandblasting (SB), hydrofluoric acid (HF), and TiF4 4 wt/v%. Each group was further subdivided into two subgroups (n = 10/subgroup) based on the type of CSCs used as follows: Subgroup A: BD and Subgroup B: WMTA. Push-out bond strength of BD and WMTA to glass fiber posts was assessed. Data were statistically analyzed using three-way ANOVA and Tukey’s test. A Weibull analysis was performed on the push-out bond strength data. Results BD showed higher bond strength than WMTA (P < 0.001). The push-out bond strength for posts treated with TiF4 4 wt/v% showed greater bond strength than the other surface treatments (P < 0.05). The BD/RP-TiF4 4 wt/v% showed the greater characteristic bond strength (σ0) (15.93) compared with the other groups. Surface treatments modified the surface topography of glass fiber posts. Conclusions The BD/RP-TiF4 4 wt/v% showed greater bond strength compared with the other groups. The TiF4 4 wt/v% surface treatment enhanced the bond strength of BD and WMTA to glass fiber posts than the other treatments. Surface treatment of fiber post with TiF4 4 wt/v% could be used to improve the bond strength with calcium silicate-based cements.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 82
Author(s):  
Salmabanu Luhar ◽  
Demetris Nicolaides ◽  
Ismail Luhar

Even though, an innovative inorganic family of geopolymer concretes are eye-catching potential building materials, it is quite essential to comprehend the fire and thermal resistance of these structural materials at a very high temperature and also when experiencing fire with a view to make certain not only the safety and security of lives and properties but also to establish them as more sustainable edifice materials for future. The experimental and field observations of degree of cracking, spalling and loss of strength within the geopolymer concretes subsequent to exposure at elevated temperature and incidences of occurrences of disastrous fires extend an indication of their resistance against such severely catastrophic conditions. The impact of heat and fire on mechanical attributes viz., mechanical-compressive strength, flexural behavior, elastic modulus; durability—thermal shrinkage; chemical stability; the impact of thermal creep on compressive strength; and microstructure properties—XRD, FTIR, NMR, SEM as well as physico-chemical modifications of geopolymer composites subsequent to their exposures at elevated temperatures is reviewed in depth. The present scientific state-of-the-art review manuscript aimed to assess the fire and thermal resistance of geopolymer concrete along with its thermo-chemistry at a towering temperature in order to introduce this novel, most modern, user and eco-benign construction materials as potentially promising, sustainable, durable, thermal and fire-resistant building materials promoting their optimal and apposite applications for construction and infrastructure industries.


Sign in / Sign up

Export Citation Format

Share Document