Impact of One-Way Streets and Contraflow on Low-Stress Bicycle Network Connectivity

Author(s):  
Theja Putta ◽  
Peter G. Furth

One-way restrictions on local streets, which tend to have low traffic stress, can create a significant barrier to low-stress cycling. Contraflow, a treatment that undoes one-way restrictions on bike travel, has the potential to improve low-stress connectivity. Although contraflow is applied routinely in the Netherlands and Belgium, it has been sparingly applied in the United States. We propose refined measures of connectivity and accessibility that account for one-way restrictions by requiring a low-stress round trip path between origins and destinations. Different methods of associating origin–destination demand from polygons with a street network were analyzed. These methods are particularly important where there are one-way restrictions and irregular street networks because of the assumptions they entail in relation to first- and last-segment travel. In a case study of Greater Boston, we found that with the current bike network, low-stress connectivity between homes and jobs would increase from 1.2% to 8.7% if one-way restrictions on local streets were eliminated. We also found that even with a dense mesh of low-stress main bike routes, connectivity would still be 16% lower without contraflow on local streets than with. These results suggest that creating a network of main bike routes is not always enough; it is also important to provide contraflow on local streets. The Boston study also found that providing contraflow on selected links representing only 3% of local one-way street mileage delivered 40% of the connectivity impact of universal contraflow. Based on this finding, a method is proposed for prioritizing streets for contraflow conversion.

2021 ◽  
Vol 13 (19) ◽  
pp. 10583
Author(s):  
Junfeng Jiao ◽  
Shunhua Bai ◽  
Seung Jun Choi

Dockless electric scooter (E-scooters) services have emerged in the United States as an alternative form of micro transit in the past few years. With the increasing popularity of E-scooters, it is important for cities to manage their usage to create and maintain safe urban environments. However, E-scooter safety in U.S. urban environments remains unexplored due to the lack of traffic and crash data related to E-scooters. Our study objective is to better understand E-scooter crashes from a street network perspective. New parcel level street network data are obtained from Zillow and curated in Geographic Information System (GIS). We conducted local Moran’s I and independent Z-test to compare where and how the street network that involves E-scooter crash differs spatially with traffic incidents. The analysis results show that there is a spatial correlation between E-scooter crashes and traffic incidents. Nevertheless, E-scooter crashes do not fully replicate characteristics of traffic incidents. Compared to traffic incidents, E-scooter incidents tend to occur adjacent to traffic signals and on primary roads.


2015 ◽  
Vol 112 (27) ◽  
pp. 8244-8249 ◽  
Author(s):  
Christopher Barrington-Leigh ◽  
Adam Millard-Ball

The urban street network is one of the most permanent features of cities. Once laid down, the pattern of streets determines urban form and the level of sprawl for decades to come. We present a high-resolution time series of urban sprawl, as measured through street network connectivity, in the United States from 1920 to 2012. Sprawl started well before private car ownership was dominant and grew steadily until the mid-1990s. Over the last two decades, however, new streets have become significantly more connected and grid-like; the peak in street-network sprawl in the United States occurred in ∼1994. By one measure of connectivity, the mean nodal degree of intersections, sprawl fell by ∼9% between 1994 and 2012. We analyze spatial variation in these changes and demonstrate the persistence of sprawl. Places that were built with a low-connectivity street network tend to stay that way, even as the network expands. We also find suggestive evidence that local government policies impact sprawl, as the largest increases in connectivity have occurred in places with policies to promote gridded streets and similar New Urbanist design principles. We provide for public use a county-level version of our street-network sprawl dataset comprising a time series of nearly 100 y.


REGION ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 39-51 ◽  
Author(s):  
Geoff Boeing

Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively run code and disseminate reproducible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tutorials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download and model street networks for various study sites, compute network indicators, visualize street centrality, calculate routes, and work with other spatial data such as building footprints and points of interest. Computational notebooks can empower guides for introducing methods to new users and can help researchers reach broader audiences interested in learning from, adapting, and remixing their work. Due to their utility and versatility, the ongoing adoption of computational notebooks in urban planning, analytics, and related geocomputation disciplines should continue into the future.


2017 ◽  
Author(s):  
Geoff Boeing

Urban scholars have studied street networks in various ways, but there are data availability and consistency limitations to the current urban planning/street network analysis literature. To address these challenges, this article presents OSMnx, a new tool to make the collection of data and creation and analysis of street networks simple, consistent, automatable and sound from the perspectives of graph theory, transportation, and urban design. OSMnx contributes five significant capabilities for researchers and practitioners: first, the automated downloading of political boundaries and building footprints; second, the tailored and automated downloading and constructing of street network data from OpenStreetMap; third, the algorithmic correction of network topology; fourth, the ability to save street networks to disk as shapefiles, GraphML, or SVG files; and fifth, the ability to analyze street networks, including calculating routes, projecting and visualizing networks, and calculating metric and topological measures. These measures include those common in urban design and transportation studies, as well as advanced measures of the structure and topology of the network. Finally, this article presents a simple case study using OSMnx to construct and analyze street networks in Portland, Oregon.


2020 ◽  
Author(s):  
Geoff Boeing

Computational notebooks offer researchers, practitioners, students, and educators the ability to interactively conduct analytics and disseminate reproducible workflows that weave together code, visuals, and narratives. This article explores the potential of computational notebooks in urban analytics and planning, demonstrating their utility through a case study of OSMnx and its tutorials repository. OSMnx is a Python package for working with OpenStreetMap data and modeling, analyzing, and visualizing street networks anywhere in the world. Its official demos and tutorials are distributed as open-source Jupyter notebooks on GitHub. This article showcases this resource by documenting the repository and demonstrating OSMnx interactively through a synoptic tutorial adapted from the repository. It illustrates how to download urban data and model street networks for various study sites, compute network indicators, visualize street centrality, calculate routes, and work with other spatial data such as building footprints and points of interest. Computational notebooks help introduce methods to new users and help researchers reach broader audiences interested in learning from, adapting, and remixing their work. Due to their utility and versatility, the ongoing adoption of computational notebooks in urban planning, analytics, and related geocomputation disciplines should continue into the future.


2014 ◽  
Vol 7 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Elisabeth Scheibelhofer

This paper focuses on gendered mobilities of highly skilled researchers working abroad. It is based on an empirical qualitative study that explored the mobility aspirations of Austrian scientists who were working in the United States at the time they were interviewed. Supported by a case study, the paper demonstrates how a qualitative research strategy including graphic drawings sketched by the interviewed persons can help us gain a better understanding of the gendered importance of social relations for the future mobility aspirations of scientists working abroad.


2015 ◽  
Vol 36-37 (1) ◽  
pp. 163-183
Author(s):  
Paul Taylor

John Rae, a Scottish antiquarian collector and spirit merchant, played a highly prominent role in the local natural history societies and exhibitions of nineteenth-century Aberdeen. While he modestly described his collection of archaeological lithics and other artefacts, principally drawn from Aberdeenshire but including some items from as far afield as the United States, as a mere ‘routh o’ auld nick-nackets' (abundance of old knick-knacks), a contemporary singled it out as ‘the best known in private hands' (Daily Free Press 4/5/91). After Rae's death, Glasgow Museums, National Museums Scotland, the University of Aberdeen Museum and the Pitt Rivers Museum in Oxford, as well as numerous individual private collectors, purchased items from the collection. Making use of historical and archive materials to explore the individual biography of Rae and his collection, this article examines how Rae's collecting and other antiquarian activities represent and mirror wider developments in both the ‘amateur’ antiquarianism carried out by Rae and his fellow collectors for reasons of self-improvement and moral education, and the ‘professional’ antiquarianism of the museums which purchased his artefacts. Considered in its wider nineteenth-century context, this is a representative case study of the early development of archaeology in the wider intellectual, scientific and social context of the era.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Sarmistha R. Majumdar

Fracking has helped to usher in an era of energy abundance in the United States. This advanced drilling procedure has helped the nation to attain the status of the largest producer of crude oil and natural gas in the world, but some of its negative externalities, such as human-induced seismicity, can no longer be ignored. The occurrence of earthquakes in communities located at proximity to disposal wells with no prior history of seismicity has shocked residents and have caused damages to properties. It has evoked individuals’ resentment against the practice of injection of fracking’s wastewater under pressure into underground disposal wells. Though the oil and gas companies have denied the existence of a link between such a practice and earthquakes and the local and state governments have delayed their responses to the unforeseen seismic events, the issue has gained in prominence among researchers, affected community residents, and the media. This case study has offered a glimpse into the varied responses of stakeholders to human-induced seismicity in a small city in the state of Texas. It is evident from this case study that although individuals’ complaints and protests from a small community may not be successful in bringing about statewide changes in regulatory policies on disposal of fracking’s wastewater, they can add to the public pressure on the state government to do something to address the problem in a state that supports fracking.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Miriam R. Aczel ◽  
Karen E. Makuch

This case study analyzes the potential impacts of weakening the National Park Service’s (NPS) “9B Regulations” enacted in 1978, which established a federal regulatory framework governing hydrocarbon rights and extraction to protect natural resources within the parks. We focus on potential risks to national parklands resulting from Executive Orders 13771—Reducing Regulation and Controlling Regulatory Costs [1]—and 13783—Promoting Energy Independence and Economic Growth [2]—and subsequent recent revisions and further deregulation. To establish context, we briefly overview the history of the United States NPS and other relevant federal agencies’ roles and responsibilities in protecting federal lands that have been set aside due to their value as areas of natural beauty or historical or cultural significance [3]. We present a case study of Theodore Roosevelt National Park (TRNP) situated within the Bakken Shale Formation—a lucrative region of oil and gas deposits—to examine potential impacts if areas of TRNP, particularly areas designated as “wilderness,” are opened to resource extraction, or if the development in other areas of the Bakken near or adjacent to the park’s boundaries expands [4]. We have chosen TRNP because of its biodiversity and rich environmental resources and location in the hydrocarbon-rich Bakken Shale. We discuss where federal agencies’ responsibility for the protection of these lands for future generations and their responsibility for oversight of mineral and petroleum resources development by private contractors have the potential for conflict.


Sign in / Sign up

Export Citation Format

Share Document