Application of Tissue Engineering Techniques for Rotator Cuff Regeneration Using a Chitosan-Based Hyaluronan Hybrid Fiber Scaffold

2005 ◽  
Vol 33 (8) ◽  
pp. 1193-1201 ◽  
Author(s):  
Tadanao Funakoshi ◽  
Tokifumi Majima ◽  
Norimasa Iwasaki ◽  
Naoki Suenaga ◽  
Naohiro Sawaguchi ◽  
...  

Background The current surgical procedures for irreparable rotator cuff tears have considerable limitations. Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing these conditions. Hypothesis A chitosan-based hyaluronan hybrid scaffold could enhance type I collagen products with seeded fibroblasts and thereby increase the mechanical strength of regenerated tendon in vivo. Study Design Controlled laboratory study. Methods The scaffolds were created from chitosan-based hyaluronan hybrid polymer fibers. Forty-eight rabbit infraspinatus tendons and their humeral insertions were removed to create defects. Each defect was covered with a fibroblast-seeded scaffold (n = 16) or a non-fibroblast-seeded scaffold (n = 16). In the other 16 shoulders, the rotator cuff defect was left free as the control. At 4 and 12 weeks after surgery, the engineered tendons were assessed by histological, immunohistochemical (n = 2), and biomechanical (n = 6) analyses. Results Type I collagen was only seen in the fibroblast-seeded scaffold and increased in the regenerated tissue. The tensile strength and tangent modulus in the fibroblast-seeded scaffold were significantly improved from 4 to 12 weeks postoperatively. The fibroblast-seeded scaffold had a significantly greater tangent modulus than did the non-fibroblast-seeded scaffold and the control at 12 weeks. Conclusion This scaffold material enhanced the production of type I collagen and led to improved mechanical strength in the regenerated tissues of the rotator cuff in vivo. Clinical Relevance Rotator cuff regeneration is feasible using this tissue engineering technique.

Author(s):  
Victor S. Nirmalanandhan ◽  
Kirsten R. C. Kinneberg ◽  
Natalia Juncosa-Melvin ◽  
Heather M. Powell ◽  
Marepalli Rao ◽  
...  

Tissue engineering offers an attractive alternative to direct repair or reconstruction of soft tissue injuries. Tissue engineered constructs containing mesenchymal stem cells (MSCs) seeded in commercially available type I collagen sponges (P1076, Kensey Nash Corporation, Exton, PA) are currently being used within our laboratory to repair tendon injuries in rabbit models [1]. When introduced into the wound site, mechanically stimulated stem cell-collagen sponge constructs exhibit 50% greater maximum force and stiffness at 12 weeks compared to values for static controls [1]. However, these constructs often lack the maximum force sufficient to resist the peak in vivo forces acting on the repair site [2, 3]. Insufficient repair biomechanics can be attributed to the poor initial mechanical resistance provided by the collagen sponges to replace the function of the lost tendon before its degradation and replacement with new extracellular matrix. This current study seeks to identify a biologically-derived scaffold with improved mechanical integrity that could be used in stem cell-based tissue engineered constructs for tendon repair.


Author(s):  
Kirsten R. C. Kinneberg ◽  
Victor S. Nirmalanandhan ◽  
Heather M. Powell ◽  
Steven T. Boyce ◽  
David L. Butler

Tissue engineering offers an attractive alternative to direct repair or reconstruction of injuries to tendons, ligaments and capsular structures that represent almost 45% of the 32 million musculoskeletal injuries that occur each year in the United States [1]. Mesenchymal stem cell (MSC)-seeded collagen constructs are currently being used by our group to repair tendon injuries in the rabbit model [2, 3]. Although these cell-assisted repairs exhibit 50% greater maximum force and stiffness at 12 weeks compared to values for natural repair, tissues often lack the maximum force sufficient to resist the peak in vivo forces acting on the repair site [3]. Our laboratory has previously demonstrated that in vitro construct stiffness and repair stiffness at 12 weeks post surgery are positively correlated [4]. Therefore, in an effort to further improve the repair outcome using tissue engineering, we continue our investigation of scaffold materials to create stiffer MSC-collagen constructs. Our group has recently evaluated two scaffold materials, type I collagen sponges fabricated within the Engineered Skin Lab (ESL, Shriners Hospitals for Children) by a freezing and lyophilization process with and without glycosaminoglycan (chondroitin-6-sulfate; GAG) [5] and found the ESL sponges to significantly improve biomechanical properties of the constructs compared to sponges we currently use in the lab (P1076, Kensey Nash Corporation, Exton, PA). This study also demonstrated that GAG significantly upregulates collagen type I, decorin, and fibronectin gene expression (unpublished results).


2017 ◽  
Vol 46 (2) ◽  
pp. 449-459 ◽  
Author(s):  
Nuno Sevivas ◽  
Fábio Gabriel Teixeira ◽  
Raquel Portugal ◽  
Bruno Direito-Santos ◽  
João Espregueira-Mendes ◽  
...  

Background: Massive rotator cuff tears (MRCTs) represent a major clinical concern, especially when degeneration and chronicity are involved, which highly compromise healing capacity. Purpose: To study the effect of the secretome of mesenchymal stem cells (MSCs) on tendon cells (TCs) followed by the combination of these activated TCs with an electrospun keratin-based scaffold to develop a tissue engineering strategy to improve tendon-bone interface (TBi) healing in a chronic MRCT rat model. Study Design: Controlled laboratory study. Methods: Human TCs (hTCs) cultured with the human MSCs (hMSCs) secretome (as conditioned media [CM]) were combined with keratin electrospun scaffolds and further implanted in a chronic MRCT rat model. Wistar-Han rats (N = 15) were randomly assigned to 1 of 3 groups: untreated lesion (MRCT group, n = 5), lesion treated with a scaffold only (scaffold-only group, n = 5), and lesion treated with a scaffold seeded with hTCs preconditioned with hMSCs-CM (STC_hMSC_CM group, n = 5). After sacrifice, 16 weeks after surgery, the rotator cuff TBi was harvested for histological analysis and biomechanical testing. Results: The hMSCs secretome increased hTCs viability and density in vitro. In vivo, a significant improvement of the tendon maturing score was observed in the STC_hMSC_CM group (mean ± standard error of the mean, 15.6 ± 1.08) compared with the MRCT group (11.0 ± 1.38; P < .05). Biomechanical tests revealed a significant increase in the total elongation to rupture (STC_hMSC_CM, 11.99 ± 3.30 mm; scaffold-only, 9.89 ± 3.47 mm; MRCT, 5.86 ± 3.16 mm; P < .05) as well as a lower stiffness (STC_hMSC_CM, 6.25 ± 1.74 N/mm; scaffold-only, 6.72 ± 1.28 N/mm; MRCT, 11.54 ± 2.99 N/mm; P < .01). Conclusion: The results demonstrated that hMSCs-CM increased hTCs viability and density in vitro. Clear benefits also were observed when these primed cells were integrated into a tissue engineering strategy with an electrospun keratin scaffold, as evidenced by improved histological and biomechanical properties for the STC_hMSC_CM group compared with the MRCT group. Clinical Relevance: This work supports further investigation into the use of MSC secretome for priming TCs toward a more differentiated phenotype, and it promotes the tissue engineering strategy as a promising modality to help improve treatment outcomes for chronic MRCTs.


2012 ◽  
Vol 506 ◽  
pp. 138-141
Author(s):  
K. Theerakittayakorn ◽  
T. Bunprasert

Human dermis was used as a new source of raw material for tissue engineering scaffold fabrication. Three human dermal solutions were prepared from different fractions after centrifugation and denoted as DS-1, DS-2 and DS-3. Approximately, the ratios of sulfated GAGs to collagen were 0.03, 0.02 and 0.04 for DS-1, DS-2 and DS-3, respectively. Scaffolds from the human dermal solutions and the commercial bovine type I collagen (Sigma®, St. Louis, MO, USA) were fabricated. The scaffolds were submerged in the normal culture medium and the calcium depositions were determined at day 1, 7 and 21. The highest calcium deposit was found in the scaffolds from type I collagen, the second were the scaffolds from DS-2, the third were the scaffolds from DS-1 and the lowest were the scaffolds from DS-3 for all time points. Histological sections stained with von Kossa stain explicitly exhibit the calcium depositions in the scaffolds. The calcium deposited in a manner according to the sulfated GAGs/collagen ratios of the scaffold materials. Calcium deposits are naturally incoperated into the collagen matrix of the human dermal solution-derived scaffolds. In bone tissue engineering, interpretation of experimental results should be careful of the spontaneous calcium deposition in scaffolds from collagen.


2011 ◽  
Vol 19 ◽  
pp. S215-S216
Author(s):  
P. Tornero-Esteban ◽  
C. Rodriguez-Bobada ◽  
J. Hoyas ◽  
E. Villafuertes ◽  
F. Marco ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marie Protais ◽  
Maxime Laurent-Perrot ◽  
Mickaël Artuso ◽  
M. Christian Moody ◽  
Alain Sautet ◽  
...  

Abstract Background Irreparable rotator cuff tears are common and difficult to treat. Techniques for “filling the loss of substance” require fixation to the rotator cuff stump (tendon augmentation) or to the glenoid (superior capsular reconstruction), which are complicated by the narrow working zone of the subacromial space. The main objective of this study was to determine whether a braided graft of gracilis (GR) and semitendinosus (ST) could fill a loss of tendon substance from an irreparable rupture of the supra- and infraspinatus, by fixing the graft to the greater tuberosity and the spine of the scapula. Methods This was a cadaveric study with the use of ten specimens. The GRA and ST tendons were harvested, braided and reinforced with suture. An experimental tear of the supraspinatus (SS) and upper infraspinatus (IS) retracted at the glenoid was made. The GRAST transplant was positioned over the tear. The transplant was attached to the greater tuberosity by two anchors and then attached to the medial third of the scapular spine by trans-osseous stitching. The percentage of filling obtained was then measured and passive mobility of the shoulder was assessed. We proceeded to the same technique under arthroscopy for a 73 years old patient whom we treated for a painful shoulder with irreparable cuff tear. We inserted a GRAST graft using arthroscopy. Results The Braided-GRAST allowed a 100% filling of the loss of tendon substance. Mobility was complete in all cases. Conclusion This technique simplifies the medial fixation and restores the musculo-tendinous chain where current grafting techniques only fill a tendinous defect. The transplant could have a subacromial “spacer” effect and lower the humeral head. The donor site morbidity and the fate of the transplant in-vivo are two limits to be discussed. This anatomical study paves the way for clinical experimentation.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Sign in / Sign up

Export Citation Format

Share Document