Anatomic and Histological Investigation of the Anterolateral Capsular Complex in the Fetal Knee

2017 ◽  
Vol 45 (6) ◽  
pp. 1383-1387 ◽  
Author(s):  
Soheil Sabzevari ◽  
Amir Ata Rahnemai-Azar ◽  
Marcio Albers ◽  
Monica Linde ◽  
Patrick Smolinski ◽  
...  

Background: There is currently disagreement with regard to the presence of a distinct ligament in the anterolateral capsular complex of the knee and its role in the pivot-shift mechanism and rotatory laxity of the knee. Purpose: To investigate the anatomic and histological properties of the anterolateral capsular complex of the fetal knee to determine whether there exists a distinct ligamentous structure running from the lateral femoral epicondyle inserting into the anterolateral tibia. Study Design: Descriptive laboratory study. Methods: Twenty-one unpaired, fresh fetal lower limbs, gestational age 18 to 22 weeks, were used for anatomic investigation. Two experienced orthopaedic surgeons performed the anatomic dissection using loupes (magnification ×3.5). Attention was focused on the anterolateral and lateral structures of the knee. After the skin and superficial fascia were removed, the iliotibial band was carefully separated from underlying structures. The anterolateral capsule was then examined under internal and external rotation and varus-valgus manual loading and at different knee flexion angles for the presence of any ligamentous structures. Eight additional unpaired, fetal lower limbs, gestational age 11 to 23 weeks, were used for histological analysis. Results: This study was not able to prove the presence of a distinct capsular or extracapsular ligamentous structure in the anterolateral capsular complex area. The presence of the fibular collateral ligament, a distal attachment of the biceps femoris, the entire lateral capsule, the iliotibial band, and the popliteus tendon in the anterolateral and lateral area of the knee was confirmed in all the samples. Histological analysis of the anterolateral capsule revealed a loose, hypocellular connective tissue with less organized collagen fibers compared with ligament and tendinous structures. Conclusion: The main finding of this study was that the presence of a distinct ligamentous structure in the anterolateral complex is not supported from a developmental point of view, while all other anatomic structures were present. Clinical Relevance: The inability to prove the existence of a distinct ligamentous structure, called the anterolateral ligament, in the anterolateral knee capsule may indicate that the other components of the anterolateral complex, such as the lateral capsule, the iliotibial band, and its capsule-osseous layer, are more important for knee rotatory stability.

2017 ◽  
Vol 5 (3_suppl3) ◽  
pp. 2325967117S0012
Author(s):  
Alexander R. Vap ◽  
Jason M. Schon ◽  
Gilbert Moatshe ◽  
Raphael Cruz ◽  
Alex Brady ◽  
...  

Objectives: The purpose of this study was to assess the effect of sequentially cutting the posterolateral, anterolateral, posteromedial and anteromedial structures of the knee on rotational kinematics in the setting of intact cruciate and collateral ligaments. It was hypothesized that cutting of the iliotibial band (ITB), anterolateral ligament and lateral capsule (ALL/LC), the posterior oblique ligament (POL), and the posteromedial capsule (PMC) would significantly increase internal rotation and that the anteromedial capsule (AMC), and the popliteus tendon and popliteofibular ligament (PLT/PFL) when sectioned would lead to a significant increase in external rotation of the knee. Methods: Ten pairs ( n = 20) of cadaveric knees were assigned to two sequential cutting groups (posterolateral-to-posteromedial and posteromedial-to-posterolateral). Specimen were subjected to 5 N-m of internal and external rotation torque at knee flexion angles 0° through 90° in the intact and after each cut state. Rotational changes were measured and compared to the intact and previous states following each cut. Results: Sectioning of the ITB significantly increased internal rotation at 60° and 90° by 5.4° and 6.2[[Unsupported Character - Codename ­]]°, respectively (after ALL/LC cut) and 3.5° and 3.8° (prior to ALL/LC cut) ( Figure 1 ). At 60° and 90°, section of the ALL/LC produced significant increases in internal rotation of 3.1[[Unsupported Character - Codename ­]]° and 3.5°, respectively (after ITB cut) and of 0.5° (prior to ITB cut) ( Figure 1 ). At 0°, section of the POL produced significant increases in internal rotation of 2.0° (ITB intact) and 1.8° (after ITB cut) ( Figure 1 ). Sectioning the PLT/PFL complex significantly increased external rotation at 60° and 90° by 2.7° and 2.9°, respectively (prior to sectioning medial structures) and 2.2° and 2.7[[Unsupported Character - Codename ­]]°, respectively (after sectioning medial structures) ( Figure 2 ). Sectioning the AMC produced significant increases in external rotation at 30°- 90° of flexion, however the magnitude of change was < 1° ( Figure 2 ). [Figure: see text][Figure: see text] Conclusion: Collectively the anterolateral corner structures had a primary role in internal rotational control of the knee from 60° to 90° of knee flexion. The ITB was the most significant primary stabilizer for internal rotation in ACL intact knees. The POL contributed to internal rotational control at full extension, while the PLT/PFL complex controlled external rotation of the knee at higher flexion angles (60° and 90°). Internal rotation control of the knee has been mainly attributed to the cruciate and collateral ligaments. This study delineates the primary and secondary roles of the ITB, the ALL/LC, POL and PLT/PFL to rotatory stability of the knee. As such, it provides new information about the understanding of rotational instabilities of the knee.


2017 ◽  
Vol 5 (5) ◽  
pp. 232596711770819 ◽  
Author(s):  
Alexander R. Vap ◽  
Jason M. Schon ◽  
Gilbert Moatshe ◽  
Raphael S. Cruz ◽  
Alex W. Brady ◽  
...  

Background: A subset of patients have clinical internal and/or external knee rotational instability despite no apparent injury to the cruciate or collateral ligaments. Purpose/Hypothesis: The purpose of this study was to assess the effect of sequentially cutting the posterolateral, anterolateral, posteromedial, and anteromedial structures of the knee on rotational stability in the setting of intact cruciate and collateral ligaments. It was hypothesized that cutting of the iliotibial band (ITB), anterolateral ligament and lateral capsule (ALL/LC), posterior oblique ligament (POL), and posteromedial capsule (PMC) would significantly increase internal rotation, while sectioning of the anteromedial capsule (AMC) and the popliteus tendon and popliteofibular ligament (PLT/PFL) would lead to a significant increase in external knee rotation. Study Design: Controlled laboratory study. Methods: Ten pairs (N = 20) of cadaveric knees were assigned to 2 sequential cutting groups (group 1: posterolateral-to-posteromedial [PL → PM] and group 2: posteromedial-to-posterolateral [PM → PL]). Specimens were subjected to applied 5-N·m internal and external rotation torques at knee flexion angles of 0°, 30°, 60°, and 90° while intact and after each cut state. Rotational changes were measured and compared with the intact and previous cut states. Results: Sectioning of the ITB significantly increased internal rotation at 60° and 90° by 5.4° and 6.2° in group 1 (PL → PM) and 3.5° and 3.8° in group 2 (PM → PL). PLT/PFL complex sectioning significantly increased external rotation at 60° and 90° by 2.7° and 2.9° in group 1 (PL → PM). At 60° and 90° in group 2 (PM → PL), ALL/LC sectioning produced significant increases in internal rotation of 3.1° and 3.5°, respectively. In group 2 (PM → PL), POL sectioning produced a significant increase in internal rotation of 2.0° at 0°. AMC sectioning significantly increased external rotation at 30° to 90° of flexion with a magnitude of change of <1° in both groups 1 (PL → PM) and 2 (PM → PL). Conclusion: Collectively, the anterolateral corner structures provided primary internal rotation control of the knee from 60° to 90° of knee flexion in knees with intact cruciate and collateral ligaments. The ITB was the most significant primary stabilizer of internal rotation. The POL had a primary role for internal rotational stability at full extension. The PLT/PFL complex was a primary stabilizer for external rotation of the knee at 60° and 90°. Clinical Relevance: This study delineates the primary and secondary roles of the ITB, ALL/LC, POL, and PLT/PFL to rotatory stability of the knee and provides new information to understand knee rotational instabilities.


2017 ◽  
Vol 5 (10) ◽  
pp. 232596711773080 ◽  
Author(s):  
Elmar Herbst ◽  
Marcio Albers ◽  
Jeremy M. Burnham ◽  
Freddie H. Fu ◽  
Volker Musahl

Background: Significant controversy exists regarding the anterolateral structures of the knee. Purpose: To determine the layer-by-layer anatomic structure of the anterolateral complex of the knee. Study Design: Descriptive laboratory study. Methods: Twenty fresh-frozen cadaveric knees (age range, 38-56 years) underwent a layer-by-layer dissection to systematically expose and identify the various structures of the anterolateral complex. Quantitative measurements were performed, and each layer was documented with high-resolution digital imaging. Results: The anterolateral complex of the knee consisted of different distinct layers, with the superficial and deep iliotibial band (ITB) representing layer 1. The superficial ITB had a distinct connection to the distal femoral metaphysis and femoral condyle (Kaplan fibers), and the deep layers of the ITB were identified originating at the level of the Kaplan fibers proximally. This functional unit, consisting of the superficial and deep ITB, was reinforced by the capsulo-osseous layer of the ITB, which was continuous with the fascia of the lateral gastrocnemius and biceps femoris muscles. These 3 components of the ITB became confluent distally, and the insertion spanned from the Gerdy tubercle anteriorly to the lateral tibia posteriorly on a small tubercle (lateral tibial tuberosity). Layer 3 consisted of the anterolateral capsule, in which 35% (7/20) of specimens had a discreet mid-third capsular ligament. Conclusion: The anterolateral complex consists of the superficial and deep ITB, the capsulo-osseous layer of the ITB, and the anterolateral capsule. The anterolateral complex is defined by the part of the ITB between the Kaplan fibers proximally and its tibial insertion, which forms a functional unit. A discrete anterolateral ligament was not observed; however, the anterolateral ligament described in recent studies likely refers to the capsulo-osseous layer or the mid-third capsular ligament. Clinical Relevance: The anterolateral knee structures form a complex functional unit. Surgeons should use caution when attempting to restore this intricate structure with extra-articular procedures designed to re-create a single discreet ligament.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 703
Author(s):  
Xiaoyi Yang ◽  
Yuqi He ◽  
Shirui Shao ◽  
Julien S. Baker ◽  
Bíró István ◽  
...  

The chasse step is one of the most important footwork maneuvers used in table tennis. The purpose of this study was to investigate the lower limb kinematic differences of table tennis athletes of different genders when using the chasse step. The 3D VICON motion analysis system was used to capture related kinematics data. The main finding of this study was that the step times for male athletes (MA) were shorter in the backward phase (BP) and significantly longer in the forward phase (FP) than for female athletes (FA) during the chasse step. Compared with FA, knee external rotation for MA was larger during the BP. MA showed a smaller knee flexion range of motion (ROM) in the BP and larger knee extension ROM in the FP. Moreover, hip flexion and adduction for MA were significantly greater than for FA. In the FP, the internal rotational velocity of the hip joint was significantly greater. MA showed larger hip internal rotation ROM in the FP but smaller hip external rotation ROM in the BP. The differences between genders can help coaches personalize their training programs and improve the performance of both male and female table tennis athletes.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Konstantin Mazayshvili

The present study has revealed the relationship between the cross sectional area of the great saphenous vein and the degree of tension in the superficial fascia of the thigh. We conducted an ultrasound examination with 27 patients (54 lower limbs) in both standing and walking positions. With an increase and decrease in the degree of tension of the superficial fascia, the blood is pushed to the sapheno-femoral junction. Nearly 200 mm3 of blood flows in, and is pushed out of, a 100-mm great saphenous vein segment in the thigh, towards the sapheno-femoral junction during a step cycle. As a result, the active function of the fascial compartment of the great saphenous vein has been found. We have called this mechanism the superficial venous pump.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yunfeng Mi ◽  
Biao Cheng

Abstract Background Gluteal muscle contracture (GMC) is a clinical syndrome characterized by the contracture of gluteal muscles, iliotibial band (ITB), and related fascia. GMC is much more prevalent in China, which has been proven to be associated with repeated intramuscular injections into the buttocks and the subsequent fibrosis and contracture.Generally, GMC is manifested mild. Here, we reported a severe case with arthrokatadysis. Case presentations A 25-year old man received multiple intramuscular injections of penicillin in the buttock when he was diagnosed with acute tonsillitis at 6 years old. Since then, he was injected penicillin regularly in local hospital because of the repeated acute tonsillitis until he was in high school. When the patient was found by the physical education teacher to be running in a state of external rotation of both feet, he was suggested to go to the hospital for treatment and was initially diagnosed to have GMC. He complained of occasional pain and limited range of motion in the hip joints. X-ray showed a typical arthrokatadysis. After arthroscopic release of GMC, the patient recovered well. Conclusions This is possibly the first reported case of arthrokatadysis that was caused by GMC after repeated intramuscular injections into the buttocks. Although the patient recovered well by arthroscopic surgical release of bilateral gluteus maximus contractures, GMC should be paid more attention and treated as early as possible.


2020 ◽  
Vol 48 (13) ◽  
pp. 3288-3295
Author(s):  
Nicholas Pasic ◽  
Timothy A. Burkhart ◽  
Pardis Baha ◽  
Olufemi R. Ayeni ◽  
Alan Getgood ◽  
...  

Background: Several techniques for hip capsular reconstruction have been described to address gross instability or microinstability due to capsular deficiency. However, objective biomechanical data to support their use are lacking. Purpose: To compare the kinematic effect of 2 capsular reconstruction techniques (iliotibial band [ITB] graft and Achilles tendon graft). Kinematic effect encompassed rotational range of motion (ROM) as well as joint translation in the coronal, sagittal, and axial planes. Study Design: Controlled laboratory study. Methods: 8 paired, fresh-frozen hemi-pelvises (16 hips) were tested on a custom-designed joint motion simulator in the intact state and after capsulectomy. Pairs were randomly allocated to either ITB or Achilles reconstruction and retested. Testing was performed at 0°, 45°, and 90° of flexion. Internal-external rotation (IR-ER) torques and abduction-adduction torques of 3 N·m were applied to the femur via a load cell at each position, and rotational ROM and joint translation in the coronal, sagittal, and axial planes were recorded. Results: At 45° and 90°, there was a significant effect of the condition of the hip on the total IR-ER ( P = .004, effect size [ES] = 0.305; and P < .001, ES = 0.497; respectively). At 45°, mean ± SD total rotation was significantly greater for the capsulectomy (59.7°± 15.9°) state compared with intact (53.3°± 13.2°; P = .007). At 90°, reconstruction significantly decreased total rotation to 49.0°± 18.9° compared with a mean total rotation of 52.8°± 18.7° after capsulectomy ( P = .02). No difference was seen in the total abduction-adduction of the hip between conditions. Comparisons of the 2 different reconstruction techniques showed no significant differences in total IR-ER or abduction-adduction ROM or joint translation in the coronal, sagittal, or axial planes. For translation, at both 0° and 45° there was a statistically significant effect of the condition on the medial-lateral translation ( P = .033; ES = 0.204). Reconstruction, independent of technique, was successful in significantly decreasing ( P = .030; P = .014) the mean medial-lateral translation at 0° and 45° of hip flexion from 5.2 ± 3.8 mm and 5.6 ± 4.0 mm to 2.8 ± 1.9 mm and 3.9 ± 3.2 mm, respectively. Conclusion: The integrity of the native hip capsule played a significant role in rotational stability, where capsulectomy significantly increased rotational ROM. Both ITB and Achilles reconstruction techniques restored normal rotational ROM of the hip at 90° of flexion as well as coronal plane stability at 0° and 45° of hip flexion. No differences were seen between ITB and Achilles reconstruction techniques. Clinical Relevance: Both capsular reconstruction techniques provide comparable joint kinematics, restoring rotation and translation to normal values with the exception of rotational ROM at 45°, which remained significantly greater than the intact state. The most significant results were the rotational stability at 90° of hip flexion and coronal plane stability at 0° and 45° of hip flexion, which were significantly improved compared with the capsulectomy state.


2014 ◽  
Vol 99 (6) ◽  
pp. 875-879 ◽  
Author(s):  
Zhang Bin ◽  
Luo Song ◽  
Wu Binghua ◽  
Qiu Ping ◽  
Dai Min

Abstract To provide an anatomic basis for treating type C distal femoral fractures by a new anterolateral approach. Twenty surgical procedures were performed in 10 adult cadaveric specimens using a new anterolateral approach followed by dissection of all lower limbs. The main anterolateral muscles and ligaments were observed. Vessels and nerves related to the new anterolateral approach were also evaluated. Full exposure of the distal femur was achieved. The iliotibial band was protected, and damage to the quadriceps femoris was reduced. The distance between the common peroneal nerve and the new incision line at the level of the lateral epicondyle of the femur was (χ̄ ± s) 8.19 ± 0.79 cm (range, 7.48–9.57 cm). This new anterolateral approach to the distal femur is safe. Although it induces slight soft tissue damage, its exposure is excellent. Knee rehabilitation can be performed in the early postoperative period.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Olewnik ◽  
Robert F. LaPrade ◽  
Friedrich Paulsen ◽  
Bartosz Gonera ◽  
Konrad Kurtys ◽  
...  

AbstractThe purpose of this study was to characterize the morphological variations in the proximal attachments and create an accurate classification of the PPM for use in planning surgical procedures in this area, for evaluating radiological imaging and rehabilitation. One hundred and thirty-four lower limbs of body donors (52 woman and 82 man) fixed in 10% formalin solution were examined. The popliteus muscle was present in all 134 limbs. Four main types were identified with subtypes. The most common type was Type I (34.3%), characterized by a single tendon in the popliteus sulcus. Type II (30.6%) characterized by a main tendon in the popliteus sulcus and accessory bands. This type was divided into five subtypes (A–E) based on presence of specific accessory bands. Type III (15.3%) was characterized by two tendons in the popliteal sulcus. Type IV (19.4%) was characterized by two tendons in the popliteus sulcus and additional bands. This type was also divided into five subtypes (A–E) based on presence of specific accessory bands. The popliteofibular ligament was present in 90.3% of cases. A new classification based on a proximal attachment is proposed. The popliteus tendon is characterized by a very high morphological variability, which can affect posterolateral knee stability and the natural rotation of the tibia. Such a classification system may be useful for clinicians performing medical procedures within the knee joint, including orthopedic surgeons.


2018 ◽  
Vol 39 (11) ◽  
pp. 1345-1354 ◽  
Author(s):  
Jessica E. Goetz ◽  
Nathan P. Davidson ◽  
M. James Rudert ◽  
Nicole Szabo ◽  
Matthew D. Karam ◽  
...  

Background: The purpose of this study was to compare mechanical behavior of conventional syndesmosis fixation devices with new anatomic repair techniques incorporating various repair augmentations to determine which approach would return rotational ankle mechanics closer to those of an intact ankle. Methods: Ten pairs of fresh-frozen through-the-knee cadaveric lower limbs were subjected to 7.5 Nm of external rotation torque while under 750 N of axial compression. After testing specimens intact and with the deltoid and syndesmotic ligament complexes completely destabilized, specimens underwent syndesmotic fixation using a screw, a suture button construct, a prototype structurally augmented flexible trans-syndesmotic fixation device, or the prototype device plus suture repairs of the anterior-inferior tibiofibular ligament and deep deltoid ligament. Syndesmotic repair devices were exchanged between tests so that each specimen was tested with 2 different fixation techniques. Whole-foot rotation angles at 7.5 Nm of applied torque were measured for comparison of the different repair strategies, and reflective markers mounted on the tibia, fibula, and talus were used to track translations and rotations of the talus and the fibula relative to the tibia during testing. Results: Syndesmotic destabilization significantly ( P < .001) increased whole-foot, talus, and fibula rotation in an axial plane and posterior fibula translation under 7.5 Nm of torque. Neither the suture button nor the augmented flexible trans-syndesmotic fixation device reduced those increases. Screw fixation or addition of anatomic ligament repairs to the augmented flexible fixation device successfully reduced axial plane rotations and sagittal plane translations to near intact levels. Conclusion: Flexible trans-syndesmotic fixation alone was found to be insufficient for restoring rotational stability to the ankle/talus or preventing sagittal plane displacement of the fibula. Clinical Relevance: Repairs to simulate anatomic structures disrupted during a syndesmosis injury were required to restore rotational stability to the foot when using flexible trans-syndesmotic fixation that may have clinical applicability.


Sign in / Sign up

Export Citation Format

Share Document