An Animal Model for Psychopharmacological Research with Relevance to Psychiatry

1973 ◽  
Vol 18 (2) ◽  
pp. 139-146
Author(s):  
John E. Peachey ◽  
Harvey C. Stancer

The concept is presented that animal models for psychopharmacological research should take into account clinical methods if they are to yield information which is relevant to psychiatry. Animal species with appropriate behavioural characteristics should be selected, drugs should be administered chronically and groups of animals should be used if social interaction is to be observed. Some of the relevant pharmacological, behavioural and environmental factors are presented and illustrated with examples taken from a study on groups of squirrel monkeys who had received parachlorophenylalanine or alpha-methylparatyrosine to lower specific brain amines. It is noted that social interaction may affect the expression of the drug effect.

2021 ◽  
Author(s):  
◽  
Michaela Pettie

<p>Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder, characterised by deficits in verbal and non-verbal communication, social interaction and repetitive behaviours (APA, 2013). The aetiology of ASD is mostly unknown, with continued research identifying a multitude of genetic and non-genetic factors. However, it is the interaction between environmental factors and the genetic background of an individual which leads to the development of ASD. There is an urgent need for improved animal models of ASD to further our understanding of the aetiology and particularly its pathophysiology, as this will aid in the development of much needed pharmaceutical treatments to alleviate the impact of adverse symptoms for individuals with ASD. Current animal models of ASD examine the genetic (e.g. serotonin transporter knock out rats) or the environmental (e.g. prenatal exposure to Valproate) contributions to the disorder, and very rarely a combination of the two.  This thesis aimed to improve the Valproate (VPA) induced ASD animal model with a genetic × environmental interaction approach, as well as optimising chronic administration of the VPA to pregnant rats. To this aim, a non-invasive method of delivering VPA was used, which allowed genetically normal rats to voluntarily consume VPA throughout pregnancy. The prenatal exposure to VPA led to ASD-like behaviours in the offspring (communication delays, increased social behaviour, and social aversion). Next, rats with a genetic deficit in SERT (SERT+/-) exposed to VPA throughout gestation, with an optimised administration method using gelatine pellets, which allowed for voluntary non-invasive consumption, and a more accurate administration of increased VPA doses. Overall, the chronic prenatal exposure to VPA in SERT+/- rats led to a mild ASD-like phenotype, with rats exhibiting communication delays, abnormal play behaviour, disrupted social preference, and to some extent increased anxiety-like behaviour. The brains of the adult offspring were examined for neuronal changes in the GABA interneurons in brain regions associated with social behaviour (amygdala and hippocampus). However, no significant effects of prenatal VPA exposure, genotype, or sex were found. Thus, the variations GABAergic system is unlikely to underlie the earlier identified behavioural alterations. Ultimately, this thesis has furthered the VPA induced ASD animal model with a genetic × environmental interaction approach, as well as optimising the chronic administration method for pregnant rats.</p>


2021 ◽  
Author(s):  
◽  
Michaela Pettie

<p>Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder, characterised by deficits in verbal and non-verbal communication, social interaction and repetitive behaviours (APA, 2013). The aetiology of ASD is mostly unknown, with continued research identifying a multitude of genetic and non-genetic factors. However, it is the interaction between environmental factors and the genetic background of an individual which leads to the development of ASD. There is an urgent need for improved animal models of ASD to further our understanding of the aetiology and particularly its pathophysiology, as this will aid in the development of much needed pharmaceutical treatments to alleviate the impact of adverse symptoms for individuals with ASD. Current animal models of ASD examine the genetic (e.g. serotonin transporter knock out rats) or the environmental (e.g. prenatal exposure to Valproate) contributions to the disorder, and very rarely a combination of the two.  This thesis aimed to improve the Valproate (VPA) induced ASD animal model with a genetic × environmental interaction approach, as well as optimising chronic administration of the VPA to pregnant rats. To this aim, a non-invasive method of delivering VPA was used, which allowed genetically normal rats to voluntarily consume VPA throughout pregnancy. The prenatal exposure to VPA led to ASD-like behaviours in the offspring (communication delays, increased social behaviour, and social aversion). Next, rats with a genetic deficit in SERT (SERT+/-) exposed to VPA throughout gestation, with an optimised administration method using gelatine pellets, which allowed for voluntary non-invasive consumption, and a more accurate administration of increased VPA doses. Overall, the chronic prenatal exposure to VPA in SERT+/- rats led to a mild ASD-like phenotype, with rats exhibiting communication delays, abnormal play behaviour, disrupted social preference, and to some extent increased anxiety-like behaviour. The brains of the adult offspring were examined for neuronal changes in the GABA interneurons in brain regions associated with social behaviour (amygdala and hippocampus). However, no significant effects of prenatal VPA exposure, genotype, or sex were found. Thus, the variations GABAergic system is unlikely to underlie the earlier identified behavioural alterations. Ultimately, this thesis has furthered the VPA induced ASD animal model with a genetic × environmental interaction approach, as well as optimising the chronic administration method for pregnant rats.</p>


2019 ◽  
Vol 42 ◽  
Author(s):  
Nicole M. Baran

AbstractReductionist thinking in neuroscience is manifest in the widespread use of animal models of neuropsychiatric disorders. Broader investigations of diverse behaviors in non-model organisms and longer-term study of the mechanisms of plasticity will yield fundamental insights into the neurobiological, developmental, genetic, and environmental factors contributing to the “massively multifactorial system networks” which go awry in mental disorders.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Author(s):  
Marina Gabriela M. C. Mori da Cunha ◽  
Katerina Mackova ◽  
Lucie Hajkova Hympanova ◽  
Maria Augusta T. Bortolini ◽  
Jan Deprest

Abstract Introduction and hypothesis We aimed to summarize the knowledge on the pathogenesis of pelvic organ prolapse (POP) generated in animal models. Methods We searched MEDLINE, Embase, Cochrane and the Web of Science to establish what animal models are used in the study of suggested risk factors for the development of POP, including pregnancy, labor, delivery, parity, aging and menopause. Lack of methodologic uniformity precluded meta-analysis; hence, results are presented as a narrative review. Results A total of 7426 studies were identified, of which 51 were included in the analysis. Pregnancy has a measurable and consistent effect across species. In rats, simulated vaginal delivery induces structural changes in the pelvic floor, without complete recovery of the vaginal muscular layer and its microvasculature, though it does not induce POP. In sheep, first vaginal delivery has a measurable effect on vaginal compliance; measured effects of additional deliveries are inconsistent. Squirrel monkeys can develop POP. Denervation of their levator ani muscle facilitates this process in animals that delivered vaginally. The models used do not develop spontaneous menopause, so it is induced by ovariectomy. Effects of menopause depend on the age at ovariectomy and the interval to measurement. In several species menopause is associated with an increase in collagen content in the longer term. In rodents there were no measurable effects of age apart of elastin changes. We found no usable data for other species. Conclusion In several species there are measurable effects of pregnancy, delivery and iatrogenic menopause. Squirrel monkeys can develop spontaneous prolapse.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


2013 ◽  
Vol 26 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Mousumi Tania ◽  
Md. Asaduzzaman Khan ◽  
Kun Xia

ObjectiveAutism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism.MethodsWe have reviewed the publications over the last three decades, which are related to animal model study in autism.ResultsAnimal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism.ConclusionIn this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1011
Author(s):  
Thi-Quyen Nguyen ◽  
Rare Rollon ◽  
Young-Ki Choi

Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model—including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates—for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Teane M. A. Silva ◽  
Erica A. Costa ◽  
Tatiane A. Paixão ◽  
Renée M. Tsolis ◽  
Renato L. Santos

Brucellosis is a chronic infectious disease caused byBrucellaspp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects ofBrucellapathogenesis have been intensively investigated in culture cells and animal models. The mouse is the animal model more commonly used to study chronic infection caused byBrucella. This model is most frequently used to investigate specific pathogenic factors ofBrucellaspp., to characterize the host immune response, and to evaluate therapeutics and vaccines. Other animal species have been used as models for brucellosis including rats, guinea pigs, and monkeys. This paper discusses the murine and other laboratory animal models for human and animal brucellosis.


Sign in / Sign up

Export Citation Format

Share Document