scholarly journals Animal Models for Influenza Research: Strengths and Weaknesses

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1011
Author(s):  
Thi-Quyen Nguyen ◽  
Rare Rollon ◽  
Young-Ki Choi

Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model—including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates—for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.

2018 ◽  
Vol 314 (4) ◽  
pp. R499-R508 ◽  
Author(s):  
Sarah A. Marshall ◽  
Natalie J. Hannan ◽  
Maria Jelinic ◽  
Thy P.H. Nguyen ◽  
Jane E. Girling ◽  
...  

Preeclampsia affects up to 8% of pregnancies worldwide and is a leading cause of both maternal and fetal morbidity and mortality. Our current understanding of the cause(s) of preeclampsia is far from complete, and the lack of a single reliable animal model that recapitulates all aspects of the disease further confounds our understanding. This is partially due to the heterogeneous nature of the disease, coupled with our evolving understanding of its etiology. Nevertheless, animal models are still highly relevant and useful tools that help us better understand the pathophysiology of specific aspects of preeclampsia. This review summarizes the various types and characteristics of animal models used to study preeclampsia, highlighting particular features of these models relevant to clinical translation. This review points out the strengths and limitations of these models to illustrate the importance of using the appropriate model depending on the research question.


2016 ◽  
Vol 5 (3) ◽  
pp. 31
Author(s):  
Shu Shen ◽  
Dawei Shi ◽  
Haiwei Zhou ◽  
Yabin Tian ◽  
Donglai Liu ◽  
...  

<p>Influenza viruses cause seasonal epidemics associated with high morbidity and mortality. Rapid diagnostic tests for the detection of pandemic influenza A virus are valuable for their ease using and accurate diagnosis of influenza. Many rapid influenza diagnostic kits were introduced recently. Hence, the sensitivities and specificities of them for testing influenza viruses need to monitor. In this study, the sensitivities and specificities of four diagnostic immunochromatographic assay kits for H1N1, H3N2, and H5N1 were evaluated. For the detection of the three H1N1, three H3N2 and one H5N1 virus line, rapid diagnostic tests exhibited excellent specificity (all positive). And no false-positive results were obtained. They differed in respect to the sensitivity, especially in the lower haemagglutinin titer. However, all of them achieve the requirements of National Institutes for food and drug Control (NIFDC). Commercial influenza immunochromatographic assay kits are useful tools for the rapid diagnosis of influenza. Nonetheless, confirmatory testing is always recommended.</p>


2021 ◽  
Author(s):  
Jing-Yi Lin ◽  
Kuo-Feng Weng ◽  
Chih-Kuang Chang ◽  
Yu-Nong Gong ◽  
Guo-Jen Huang ◽  
...  

Enterovirus A71 (EV-A71) and many members of the Picornaviridae family are neurotropic pathogens of global concern. These viruses are primarily transmitted through the fecal-oral route, and thus suitable animal models of oral infection are needed to investigate viral pathogenesis. An animal model of oral infection was developed using transgenic mice expressing human SCARB2 (hSCARB2 Tg), murine-adapted EV-A71/MP4 virus, and EV-A71/MP4 virus with an engineered nanoluciferase gene that allows imaging of viral replication and spread in infected mice. Next-generation sequencing of EV-A71 genomes in the tissues and organs of infected mice was also performed. Oral inoculation of EV-A71/MP4 or nanoluciferase-carrying MP4 virus stably induced neurological symptoms and death in infected 21-day-old weaned mice. In vivo bioluminescence imaging of infected mice and tissue immunostaining of viral antigens indicated that orally-inoculated virus can spread to the central nervous system and other tissues. Next-generating sequencing further identified diverse mutations in viral genomes that can potentially contribute to viral pathogenesis. This study presents an EV-A71 oral infection murine model that efficiently infects weaned mice and allows tracking of viral spread, features that can facilitate research into viral pathogenesis and neuroinvasion via the natural route of infection. Importance Enterovirus A71 (EV-A71), a positive-strand RNA virus of the Picornaviridae , poses a persistent global public health problem. EV-A71 is primarily transmitted through the fecal-oral route, and thus suitable animal models of oral infection are needed to investigate viral pathogenesis. We present an animal model of EV-A71 infection that enables the natural route of oral infection in weaned and non-immunocompromised 21-day-old hSCARB2 transgenic mice. Our results demonstrate that severe disease and death could be stably induced and viral invasion of the CNS could be replicated in this model, similar to severe real-world EV-A71 infections. We also developed a nanoluciferase-containing EV-A71 virus that can be used with this animal model to track viral spread after oral infection in real-time. Such a model offers several advantages over existing animal models, and can facilitate future research into viral spread, tissue tropism, and viral pathogenesis, all pressing issues that remain unaddressed for EV-A71 infections.


2021 ◽  
Vol 2 (4) ◽  
pp. 412-424
Author(s):  
Nadine Wenzel ◽  
Rainer Blasczyk ◽  
Constanca Figueiredo

Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


2013 ◽  
Vol 26 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Mousumi Tania ◽  
Md. Asaduzzaman Khan ◽  
Kun Xia

ObjectiveAutism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism.MethodsWe have reviewed the publications over the last three decades, which are related to animal model study in autism.ResultsAnimal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism.ConclusionIn this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-2
Author(s):  
Bishnu Prasad Upadhyay

Influenza virus type A and B are responsible for seasonal epidemics as well as pandemics in human. Influenza A viruses are further divided into two major groups namely, low pathogenic seasonal influenza (A/H1N1, A/H1N1 pdm09, A/H3N2) and highly pathogenic influenza virus (H5N1, H5N6, H7N9) on the basis of two surface antigens: hemagglutinin (HA) and neuraminidase (NA). Mutations, including substitutions, deletions, and insertions, are one of the most important mechanisms for producing new variant of influenza viruses. During the last 30 years; more than 50 viral threat has been evolved in South-East Asian countriesof them influenza is one of the major emerging and re-emerging infectious diseases of global concern. Similar to tropical and sub-tropical countries of Southeast Asia; circulation of A/H1N1 pdm09, A/H3N2 and influenza B has been circulating throughout the year with the peak during July-November in Nepal. However; the rate of infection transmission reach peak during the post-rain and winter season of Nepal.


Pharmacology ◽  
2021 ◽  
pp. 1-13
Author(s):  
Catarina V. Jota Baptista ◽  
Ana I. Faustino-Rocha ◽  
Paula A. Oliveira

<b><i>Background:</i></b> The Nobel Prize of Physiology or Medicine (NPPM) has recognized the work of 222 scientists from different nationalities, from 1901 until 2020. From the total, 186 award researchers used animal models in their projects, and 21 were attributed to scientists and projects directly related to Pharmacology. In the most recent years, genetics is a dominant scientific area, while at the beginning of the 20th century, most of the studies were more related to anatomy, cytology, and physiology. <b><i>Summary:</i></b> Mammalian models were used in 144 NPPM projects, being rodents the most used group of species. Moreover, 92 researchers included domestic species in their work. The criteria used to choose the species, the number of animals used and the experimental protocol is always debatable and dependent on the scientific area of the study; however, the 3R’s principle can be applied to most scientific fields. Independently of the species, the animal model can be classified in different types and criteria, depending on their ecology, genetics, and mode of action. <b><i>Key-Messages:</i></b> The use of animal models in NPPM awarded projects, namely in Pharmacology, illustrates their importance, need and benefit to improve scientific knowledge and create solutions. In the future, with the contribute of technology, it might be possible to refine the use of animal models in pharmacology studies.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 815
Author(s):  
Cindy M. Spruit ◽  
Nikoloz Nemanichvili ◽  
Masatoshi Okamatsu ◽  
Hiromu Takematsu ◽  
Geert-Jan Boons ◽  
...  

The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document