Effect of viscose fabric modification on the mechanical and water absorption properties of composites prepared through vacuum infusion

2014 ◽  
Vol 33 (15) ◽  
pp. 1416-1429 ◽  
Author(s):  
R Rajan ◽  
J Riihivuori ◽  
E Rainosalo ◽  
M Skrifvars ◽  
P Järvelä
2015 ◽  
Vol 6 (2) ◽  
pp. 34-38
Author(s):  
M. S. Jamaludin ◽  
A. Zulkharnain ◽  
A. A. Khan ◽  
N. Wagiman

 This study examines the water absorption of sago hampas biocomposite utilizing glycidyl methacrylate as its matrix. Composites were fabricated with 25, 30, 40 wt% sago hampas content and another sample of pure sago hampas using hydraulics hot press machine. The water absorption properties of composites with different sago hampas composition were investigated according to Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials of ASTM D570. Water absorption of pure sago hampas composite have the highest average water absorption percentage with 59.1 wt% as compared to the lowest average water absorption percentage recorded for 30 wt% sago hampas content biocomposite with 16.8%. However sago hampas loading was increased resulting in the increased in average water absorption on biocomposite for 40 wt% sago hampas content which is 33.1%.


2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Samuel Mandin ◽  
Samuel Moreau ◽  
Malika Talantikite ◽  
Bruno Novalès ◽  
Jean-Eudes Maigret ◽  
...  

Bio-based aerogels containing cellulose nanofibrils (CNFs) are promising materials due to the inherent physical properties of CNF. The high affinity of cellulose to plant hemicelluloses (xyloglucan, xylan, pectin) is also an opportunity to develop biomaterials with new properties. Here, we prepared aerogels from gelled dispersions of CNFs and xyloglucan (XG) at different ratios by using a freeze-casting procedure in unidirectional (UD) and non-directional (ND) manners. As showed by rheology analysis, CNF and CNF/XG dispersions behave as true gels. We investigated the impact of the freezing procedure and the gel’s composition on the microstructure and the water absorption properties. The introduction of XG greatly affects the microstructure of the aerogel from lamellar to cellular morphology. Bio-based aerogels showed high water absorption capacity with shape recovery after compression. The relation between morphology and aerogel compositions is discussed.


2012 ◽  
Vol 127 (2) ◽  
pp. 1295-1300 ◽  
Author(s):  
Catherine Esnaashari ◽  
Saied Nouri Khorasani ◽  
Mehdi Entezam ◽  
Shahla Khalili

2018 ◽  
Vol 33 (3) ◽  
pp. 289-304 ◽  
Author(s):  
Kuhananthan Nanthakumar ◽  
Chan Ming Yeng ◽  
Koay Seong Chun

This research covers the preparation of poly(lactic acid) (PLA)/sugarcane leaves fibre (SLF) biofilms via a solvent-casting method. The results showed that the tensile strength and Young’s modulus of PLA/SLF biofilms increased with the increasing of SLF content. Nevertheless, the elongation at break showed an opposite trend as compared to tensile strength and Young’s modulus of biofilms. Moreover, water absorption properties of PLA/SLF biofilms increased with the increasing of SLF content. In contrast, the tensile strength and Young’s modulus of biofilms were enhanced after bleaching treatment with hydrogen peroxide on SLF, but the elongation at break and water absorption properties of bleached biofilms were reduced due to the improvement of filler–matrix adhesion in biofilms. The tensile and water properties were further discussed using B-factor and Fick’s law, respectively. Furthermore, the functional groups of unbleached and bleached SLF were characterized by Fourier transform infrared analysis.


2013 ◽  
Vol 421 ◽  
pp. 290-295
Author(s):  
Mohammad Taib Mohamad Nurul Azman ◽  
Abu Kassim Masitah ◽  
Ariff Jamaludin Mohd ◽  
Ismail Tayibbah

This research investigated the tensile and water absorption properties of kenaf fibre mat/polyester composites. Treatment using acetylation method has been introduced to improve the properties of product manufactured. The effects of acetylation treatment with three variations of time that were 1, 4 and 24 hours on the kenaf fibre mats were investigated. The MOE of the tensile of treated fibre mat/polyester composite for 1 hour was the highest with value 4589.61 MPa. The tensile strength of treated fibre mat/polyester composite for 4 hours was the highest with value 0.6213 MPa. For water absorption test, the results showed that fibre mat/polyester composite with treatment duration for 1 hour had the lowest water absorption that was 1.23% compared with treatment duration for 4 hours and 24 hours. For overall it can be concluded that the treatment duration of 1 hour was recommended for acetylation method when compared with 4 hours and 24 hours duration treatments. Using acetylation treatment on the kenaf fibre mat/polyester composites was showed improvement on composite and was recommended in short duration of treatment.


Sign in / Sign up

Export Citation Format

Share Document