Vacuum infusion in porous preform with different mould configurations: Flow simulation and experimental validation

2020 ◽  
pp. 073168442096020
Author(s):  
Debabrata Adhikari ◽  
Suhasini Gururaja ◽  
Santosh Hemchandra

The present work focuses on the formulation of transient incompressible resin flow during vacuum-assisted resin transfer moulding using level set front tracking method in a multi-block structured grid within a finite difference framework. Initially, the relation between compaction pressure and fibre volume fraction ([Formula: see text]) has been established by conducting compression tests using a universal tensile machine under dry and wet conditions. In-plane permeability has been characterised as a function of [Formula: see text] using three thicknesses of unidirectional carbon fabric (4, 8 and 12 plies). A pressure data acquisition system and a non-contact out-of-plane displacement measurement setup have been developed using a single lens camera to conduct the vacuum infusion experiments. The numerical model prediction of the instantaneous change in pressure, displacement, and fill time has been validated with the experiments for the three different thickness of unidirectional preform in a flat plate and a plate with a centrally located hole during vacuum infusion. The coupled transient flow model with the level set interface propagation in a multi-block framework shows a good agreement with vacuum infusion experiments. The proposed transient vacuum infusion flow model, compaction relation with [Formula: see text], permeability and experimental setup show the potential to capture realistic flow physics during vacuum infusion on different mould configurations.

2006 ◽  
Vol 15 (2) ◽  
pp. 096369350601500
Author(s):  
Young Seok Song

A study on mold filling in vacuum infusion process was carried out analytically. Three different compaction models were used to describe compaction behaviour of preforms. New analytic solutions were proposed for fibre volume fraction and pressure distributions, and an effective permeability was defined based on the solutions. In this study, the closed form equations introduced by Lopatnikov et al. [1] were modified to consider the preform compaction behaviour more exactly and the results of the modified equations were employed in an effort to verify the proposed analytic model. It was found that the very different pressure and fibre volume fraction profiles were developed during the resin infusion depending on the compaction behaviour of the preforms.


2015 ◽  
Vol 74 (10) ◽  
Author(s):  
H. H. Ya ◽  
H. EL-Sobky

The behaviour of extruded glass fibre reinforced thermoplastic pipes under axial crushing load was investigated experimentally. It was envisaged that the difference between the axial and hoop moduli and strengths as well as the volume fraction would influence the mode of collapses and energy absorption. The ability to vary the moduli and the fibre volume fraction provides means of controlling the collapse mode in order to optimize specific energy absorption. Axial compression tests were performed on glass filled Polypropylene (GPP) and glass filled Polyethylene (GPE) composite pipes. The samples were chosen with a variety of fibre volume fraction (Vf = 5% to 20% and average angle of orientation 15θ">  = 50o to 80o) to evaluate the effect of anisotropy and Vf to the collapse modes when subjected to axial static loading. The results from the experiments revealed that typical axial and hoop modulus (Ea and 15Eθ"> ) of GPP and GPE pipes increased with increasing of 15θ">  from 55 15°">  to 75 15°">  and decreased gradually in between 75 15°">  to 80 15°"> . The axial modulus was increased constantly with the increase of Vf from 5 % to 20 %. However, the hoop modulus is the highest at 5% Vf, decreases significantly at 10%, and gradually increases at 20%. It is noticed that, the GPP and GPE pipes contain higher Vf and 15θ"> , collapsed in brittle failure mode (fragmentation), whereas those with less Vf and 15θ">  angle, collapsed in non-axis-symmetric (diamond) mode with the local fracture while the local fracture disappeared with lower fibre contents.


2016 ◽  
Vol 673 ◽  
pp. 141-149 ◽  
Author(s):  
H.H. Ya ◽  
H. El-Sobky

–The behaviour of extruded glass fibre reinforced thermoplastic pipe under axial crushing load was investigated experimentally. It was envisaged that the difference between the axial and hoop moduli and strengths as well as the volume fraction would influence the mode of collapses and energy absorption. The moduli could be varied using a new extrusion technology, which controls the fibre orientation pattern, hence, the mechanical properties. The ability to vary the moduli and the fibre volume fraction provide means of controlling the collapse mode in order to optimise specific energy absorption. Axial compression tests were performed on glass filled Polypropylene and Polyethylene composite pipes. The samples were chosen with a variety of fibre volume fraction, Vf = 5% to 20% and average angle of orientation, θ = 50o to 80o to evaluate the effect of anisotropy and Vf on the energy absorption capacity and collapse modes. The observations indicate that, the samples containing of higher Vf and θ, collapsed in brittle failure mode (fragmentation), while those with less Vf and θ angle collapsed in non-axis-symmetric (diamond) mode with local fracture. The galss fillet with polypropylene-60o (GPP-60) displayed the highest specific energy absorption (Es) compared to the other GPE, MDPE and LDPE pipe samples. However, the glass fillet polyethylene – 75o (GPE-75) displayed the highest Es and the glass fillet polyethylene – 65o (GPE-65) displayed the lowest Es compared with in the GPE pipes. The specific energy absorption of GPP-70 pipe (24 kJ/kg) and GPE-75 pipe (12 kJ/kg) is almost 50 % and 25% of the amount of specific energy absorption of aluminium tubes (60 kJ/kg), respectively. Moreover, it is close to the specific energy absorption of glass-epoxy 15o (GE-15) / which is 30 kJ/kg, and much higher than aramid-epoxy-15o (AE-15)/ which is 9 kJ/kg.


2021 ◽  
pp. 152808372110242
Author(s):  
Hussein Kommur Dalfi ◽  
Zeshan Yousaf ◽  
Erdem Selver ◽  
Prasad Potluri

Fabric preforms undergo transverse compaction during composite manufacturing. This compaction changes the preform thickness, fibre volume fraction (FVF), tow geometry and voids for resin flow. In this paper, influence of yarn hybridisation and fibre architecture on the compaction response of woven fabric preforms has been studied. A series of cyclic compression tests have been carried out on both dry and wet preforms. The effect of hybridisation on compressibility has been investigated for single as well as multilayer fabrics. The influence of interlacement pattern (twill and satin fabrics) with hybrid yarns has also been investigated. Nesting efficiencies of multilayer stacks have been studied by utilising mechanical test results. Additionally, the meso-structure of single and multilayer fabrics under 1 bar pressure has been analysed using SEM images. It is observed that the thickness reduction for single layer twill hybrid fabric is 38% while thickness reduction for twill S-glass fabric is 67% at 100 kPa. Moreover, single layer hybrid twill fabrics have shown higher compressibility resistance (60% thickness reduction at 100 kPa) compared to single layer hybrid satin fabrics (which showed 67% thickness reduction at 100 kPa). Whereas opposite trend is observed for multilayer hybrid fabrics due to nesting effect.


2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.


2013 ◽  
Vol 746 ◽  
pp. 385-389
Author(s):  
Li Yan Liu ◽  
Yu Ping Chen ◽  
Jing Zhu

This paper is aiming to develop the cattail fibre as reinforcing material due to its environmental benefits and excellent physical and insulated characteristics. The current work is concerned with the development of the technical fibres from the original plant and research on their reinforcing properties in the innovative composites. Polypropylene (PP) fibre was used as matrix in this research which was fabricated into fibre mats with cattail fibre together with different fibre volume fractions. Cattail fibre reinforced PP laminates were manufactured and compared with jute/PP composites. The tensile and bending properties of laminates were tested. The SEM micrographs of fracture surface of the laminates were analyzed as well. The results reveal that the tensile and bending properties of cattail/PP laminates are closed to those of jute/PP composites. The mechanical properties of cattail/jute/PP laminates with fibre volume fraction of 20/35/45 is betther than those of laminate reinforced with cattail fibers.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Kaleem A. Zaidi ◽  
Umesh K. Sharma ◽  
N. M. Bhandari ◽  
P. Bhargava

HSC normally suffers from low stiffness and poor strain capacity after exposure to high temperature. High strength confined fibrous concrete (HSCFC) is being used in industrial structures and other high rise buildings that may be subjected to high temperature during operation or in case of an accidental fire. The proper understanding of the effect of elevated temperature on the stress-strain relationship of HSCFC is necessary for the assessment of structural safety. Further stress-strain model of HSCFC after exposure to high temperature is scarce in literature. Experimental results are used to generate the complete stress-strain curves of HSCFC after exposure to high temperature in compression. The variation in concrete mixes was achieved by varying the types of fibre, volume fraction of fibres, and temperature of exposure from ambient to 800°C. The degree of confinement was kept constant in all the specimens. A comparative assessment of different models on the high strength confined concrete was also conducted at different temperature for the accuracy of proposed model. The proposed empirical stress-strain equations are suitable for both high strength confined concrete and HSCFC after exposure to high temperature in compression. The predictions were found to be in good agreement and well fit with experimental results.


Sign in / Sign up

Export Citation Format

Share Document