Development of models for the prediction of energy content of fresh municipal solid waste from an unsecured landfill in India

2021 ◽  
pp. 0734242X2098560
Author(s):  
Faisal Zia Siddiqui ◽  
M Humam Zaim Faruqi ◽  
Suneel Pandey ◽  
Mohd Emran Khan

The enormous quantities of municipal solid waste (MSW) generation in Indian cities has emerged as a serious concern. In order to reduce the negative environmental impacts of MSW accumulation in dumpsites or unsecured landfills across India, various measures have been proposed to facilitate conversion of MSW into a valuable resource. One such measure is the immense potential for utilization of MSW as a source of energy. In this study, a comprehensive estimation of the energy potential of freshly dumped MSW has been conducted at a large unsecured landfill site in Okhla, Delhi, which is the capital city of India. Multiple regression models were developed to predict gross calorific value (GCV) and net calorific value (NCV) of MSW in terms of physical composition, proximate analysis and ultimate analysis of the waste. The developed models were found to give a reasonably good prediction of energy content of freshly dumped MSW in the landfill. Food waste, inerts, textile and paper were found to be the prime constituents of fresh MSW arriving at the landfill site. Based on the statistical analysis, volatile matter content and oxygen content of MSW were found to be non-significant terms in the energy content models derived using proximate analysis and ultimate analysis, respectively. The models developed in this study can be used to predict energy content of MSW at other landfill sites in India under similar climatic conditions and disposal practices.

2019 ◽  
Vol 37 (12) ◽  
pp. 1271-1281 ◽  
Author(s):  
Bexultan Abylkhani ◽  
Berik Aiymbetov ◽  
Almira Yagofarova ◽  
Diyar Tokmurzin ◽  
Christos Venetis ◽  
...  

This study presents the results of a seasonal municipal solid waste composition campaign, that took place over the period of September 2017 to June 2018 in the capital city of Kazakhstan, Astana. Four sampling campaigns were conducted in order to identify the seasonal variation of municipal solid waste composition, recyclables and energy potential materials, such as combustible fraction, useful for the evaluation of waste-to-energy potential. The combustible fraction was analysed for thermal fuel properties, such as proximate and elemental analyses and gross calorific value. The results over the four different seasons showed that the average recyclable fraction of municipal solid waste on a wet basis of 33.3 wt.% and combustibles fraction was 8.3 wt.%. The largest fraction was the organics (47.2 wt.%), followed by plastic (15.4 wt.%) and paper (12.5 wt.%). Small seasonal variations were observed for organics, paper, plastic and glass fractions. The highest values were found in summer for the organic waste, in spring for paper and plastic and autumn for glass. The recyclables fraction showed an absolute seasonal variation of 5.7% with a peak in the winter season (35.4%) and the combustibles fraction showed a seasonal variation between 8.3 wt.% to 9.4 wt.%. Finally, the average calorific value of the combustible fraction was estimated to be 21.6 MJ kg-1 on a dry basis.


2018 ◽  
Vol 2 (2) ◽  
pp. 93-103
Author(s):  
Ade Ariesmayana ◽  
Fitri Dwirani

ABSTRAK Penelitian ini memberikan solusi dalam alternatif energi terbarukan dengan memanfaatkan sampah kota (municipal solid waste) dari sumber Tempat Pembuangan Akhir  Sampah (TPA) Cilowong, Kota Serang. Penelitian ini bertujuan untuk menguji karakteristik sampah Kota Serang, yang meliputi Uji  Proksimat (proximate analysis), Uji Ultimat (ultimate analysis), Kadar Air Sampah dan Uji Nilai Kalor, serta mengetahui seberapa potensialkah timbulan sampah Kota Serang sebagai energi alternatif pengganti bahan bakar fosil. Penelitian dilakukan pada kawasan TPA Cilowong, Kota Serang. Pada laporan ini dibatasi hanya pada perhitungan Kadar Air Sampah. Metode penelitian yang  digunakan adalah dengan pengujian laboratorium dan analisis kelayakan karakteristik sampah. Teknik penelitian yaitu  dengan melakukan survei dan obervasi ke TPAS Cilowong serta wawancara mendalam dengan dinas terkait dan masyarakat yang tinggal di sekitar kawasan tersebut. Hasil penelitian ini adalah kelayakan sampah kota Serang sebagai energi alternatif pengganti bahan bakar fosil.   Kata Kunci: Energi Alternatif, Kadar Air Sampah, TPA Cilowong     ABSTRACT This research provides solutions in alternative renewable energy by utilizing municipal solid waste from the source of the Cilowong Waste Disposal Site (TPA), Serang City. This study aims to examine the characteristics of the city of Serang waste, which includes the Proximate Test (proximate analysis), Ultimate Analysis, Waste Water Content and Calorific Value Test, and find out the potential waste generation of Serang City as an alternative energy to replace fossil fuels. The study was conducted in the Cilowong landfill area, Serang City. This report is limited only to the calculation of Waste Water Content. The research method used is laboratory testing and analysis of the characteristics of waste characteristics. The research technique is by conducting surveys and observations to the Cilowong TPAS as well as in-depth interviews with related agencies and the people living around the area. The results of this study are the feasibility of municipal waste as an alternative energy substitute for fossil fuels.   Keywords: Alternative Energy, Waste Water Content, Cilowong Landfill


2018 ◽  
Vol 14 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Krishna Bahadur Sodari ◽  
Amrit Man Nakarmi

 This research is carried out to assess the current status of municipal solid waste of municipalities of Nepal and its potential for energy recovery. During the year 2016, solid waste samples were collected by door-to-door collection method and the total energy content of the municipal waste was calculated using Bomb Calorimeter in the laboratory. During the study period, the total waste generated at Kathmandu metropolitan city was 566 tons per day with 0.3 kg per capita contribution. The major waste constituent was the organic with 67.77% of the total waste volume. Other bulk wastes were plastic and paper constituting 10% and 5% by volume respectively. Rest of the wastes (8%) was categorized as “other". In average, the total moisture content in the wastes was 49.93%. Total waste generation of all municipalities was found 1435 tons per day. The calorific value of the plastic wastes had highest energy content (40.61 MJ/kg). The organic (15.68 MJ/kg) and paper (15.61MJ/kg) wastes had similar energy content while the other wastes had slightly higher energy content (17.57MJ/kg). The net energy available and, thus, lost after dumping of the solid waste was 71,895,056 MJ which is equivalent to 4262 MWh which can run 52 MW plasma arc gasification power plant. The waste to energy potential of Kathmandu Metropolitan city was found to be 19 MW. Total reduction in GHG emission was found 220,690 kg CO2 eq kg per day.Journal of the Institute of Engineering, 2018, 14(1): 151-161


2021 ◽  
Vol 22 (1&2) ◽  
pp. 27-33
Author(s):  
Yeshi Choden ◽  
Tashi Tenzin ◽  
Karchung K. ◽  
Karma Norbu ◽  
Sangay Wangmo ◽  
...  

Conversion of Solid waste into energy is the most resourceful process to combat landfill saturation and environmental impression. Bhutan, with an exponential rise in the waste production, Waste to Energy (WTE) conversion is an alternative solution for municipal solid waste management (MSW). The study for MSW composition and its energy potential analysis for Memelakha (Thimphu) and Pekarshing (Phuntsholing) landfills was done to resolve the waste management challenges in the country. The standard number of samples from two dumpsites were used to analyze for the waste characterization (waste composition, proximate analysis, chemical analysis) and high heating value (HHV) of MSW. MSW of two landfills showed that the main elemental constituents were Carbon and Oxygen with 17.26% and 9.97% by mass respectively for Pekarshing and 16.52% (Carbon) and 11.07% (Oxygen) by mass for Memelakha landfill. Based on the physio-chemical analysis of MSW, the average calorific HHV of MSW obtained were 10.028 MJ/kg (26.04% of coal energy) for Pekarshing dumpsite and 9.6 MJ/kg (24.94% of coal energy) for Memelakha. The analysis showed that by the year 2050 Memelakha landfill has the potential to generate the power of 8.85 Megawatt (MW) and 1.44 Megawatt (MW) for Pekarshing. For (WTE) conversion, incineration, pyrolysis, and gasification technologies are found suitable based on the current composition MSW of Bhutan. Furthermore, in terms of energy efficiency and percentage of wastage, the gasification process was the most feasible method for WTE conversion at two locations with a waste volume reduction of 80 to 90 percent at the landfill.


2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2021 ◽  
Vol 22 (2) ◽  
pp. 10-20
Author(s):  
Amadou Dioulde Donghol Diallo ◽  
Ma’an Fahmi Rashid Alkhatib ◽  
Md Zahangir Alam ◽  
Maizirwan Mel

Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential replacement for fossil fuel. It is renewable and carbon neutral. The efficient management of this potential energy will help to deal with the problem associated with fossil fuels. However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in energy applications is the calorific value (CV). When this CV is low, then its potential utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add municipal solid waste to enhance energetic value. Thus, two major issues will be solved: managing solid residues and contributing an alternative energy source. This study aimed to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make clean energy that is conscious of the environment (climate change) and sustainable development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, were mixed, with EFB at various ratios. Proximate analysis was used to determine moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element was also measured. The research revealed a significant increase in the calorific value of EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing of EFB with MSW promoted the increase in the CV of EFB to an average of 23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel (RDF) in a pyrolysis or gasification process with little to no environmental effects. ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran.


Energy management is a very important concept from the point of view of economics, as it explains the energy generated from various sources in various dimensions and ways such as alternating current, high, low or medium voltage, high and low amps, time-variant etc., all these combinations can be used in smart ways. It is used to decide the amount of energy which is required and then is stored for the long as well as short terms to avoid power cut and failure issues. The municipal solid waste (MSW) is also one of the major issues which mainly increases due to the urban population. The conventional dumping and treatment techniques for the MSW have some major ecological difficulties. In this paper, a preliminary report has been presented for the Waste-to-energy conversions. This study also identifies the potential of calorific value from the municipal solid waste generated in the capital city of Uttarakhand (Dehradun). All the related and relevant information are used to analyze energy penetration through proper literature reviews of different research papers and articles.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Venkata Ravi Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

AbstractLandfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5–20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies include determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3% and no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg− 1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2021 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5-20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg-1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


Sign in / Sign up

Export Citation Format

Share Document