scholarly journals Electricity Generation Potential of Municipal Solid Waste of Nepal and GHG Mitigations

2018 ◽  
Vol 14 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Krishna Bahadur Sodari ◽  
Amrit Man Nakarmi

 This research is carried out to assess the current status of municipal solid waste of municipalities of Nepal and its potential for energy recovery. During the year 2016, solid waste samples were collected by door-to-door collection method and the total energy content of the municipal waste was calculated using Bomb Calorimeter in the laboratory. During the study period, the total waste generated at Kathmandu metropolitan city was 566 tons per day with 0.3 kg per capita contribution. The major waste constituent was the organic with 67.77% of the total waste volume. Other bulk wastes were plastic and paper constituting 10% and 5% by volume respectively. Rest of the wastes (8%) was categorized as “other". In average, the total moisture content in the wastes was 49.93%. Total waste generation of all municipalities was found 1435 tons per day. The calorific value of the plastic wastes had highest energy content (40.61 MJ/kg). The organic (15.68 MJ/kg) and paper (15.61MJ/kg) wastes had similar energy content while the other wastes had slightly higher energy content (17.57MJ/kg). The net energy available and, thus, lost after dumping of the solid waste was 71,895,056 MJ which is equivalent to 4262 MWh which can run 52 MW plasma arc gasification power plant. The waste to energy potential of Kathmandu Metropolitan city was found to be 19 MW. Total reduction in GHG emission was found 220,690 kg CO2 eq kg per day.Journal of the Institute of Engineering, 2018, 14(1): 151-161

2019 ◽  
Vol 37 (12) ◽  
pp. 1271-1281 ◽  
Author(s):  
Bexultan Abylkhani ◽  
Berik Aiymbetov ◽  
Almira Yagofarova ◽  
Diyar Tokmurzin ◽  
Christos Venetis ◽  
...  

This study presents the results of a seasonal municipal solid waste composition campaign, that took place over the period of September 2017 to June 2018 in the capital city of Kazakhstan, Astana. Four sampling campaigns were conducted in order to identify the seasonal variation of municipal solid waste composition, recyclables and energy potential materials, such as combustible fraction, useful for the evaluation of waste-to-energy potential. The combustible fraction was analysed for thermal fuel properties, such as proximate and elemental analyses and gross calorific value. The results over the four different seasons showed that the average recyclable fraction of municipal solid waste on a wet basis of 33.3 wt.% and combustibles fraction was 8.3 wt.%. The largest fraction was the organics (47.2 wt.%), followed by plastic (15.4 wt.%) and paper (12.5 wt.%). Small seasonal variations were observed for organics, paper, plastic and glass fractions. The highest values were found in summer for the organic waste, in spring for paper and plastic and autumn for glass. The recyclables fraction showed an absolute seasonal variation of 5.7% with a peak in the winter season (35.4%) and the combustibles fraction showed a seasonal variation between 8.3 wt.% to 9.4 wt.%. Finally, the average calorific value of the combustible fraction was estimated to be 21.6 MJ kg-1 on a dry basis.


2021 ◽  
pp. 0734242X2098560
Author(s):  
Faisal Zia Siddiqui ◽  
M Humam Zaim Faruqi ◽  
Suneel Pandey ◽  
Mohd Emran Khan

The enormous quantities of municipal solid waste (MSW) generation in Indian cities has emerged as a serious concern. In order to reduce the negative environmental impacts of MSW accumulation in dumpsites or unsecured landfills across India, various measures have been proposed to facilitate conversion of MSW into a valuable resource. One such measure is the immense potential for utilization of MSW as a source of energy. In this study, a comprehensive estimation of the energy potential of freshly dumped MSW has been conducted at a large unsecured landfill site in Okhla, Delhi, which is the capital city of India. Multiple regression models were developed to predict gross calorific value (GCV) and net calorific value (NCV) of MSW in terms of physical composition, proximate analysis and ultimate analysis of the waste. The developed models were found to give a reasonably good prediction of energy content of freshly dumped MSW in the landfill. Food waste, inerts, textile and paper were found to be the prime constituents of fresh MSW arriving at the landfill site. Based on the statistical analysis, volatile matter content and oxygen content of MSW were found to be non-significant terms in the energy content models derived using proximate analysis and ultimate analysis, respectively. The models developed in this study can be used to predict energy content of MSW at other landfill sites in India under similar climatic conditions and disposal practices.


2021 ◽  
Vol 22 (1&2) ◽  
pp. 27-33
Author(s):  
Yeshi Choden ◽  
Tashi Tenzin ◽  
Karchung K. ◽  
Karma Norbu ◽  
Sangay Wangmo ◽  
...  

Conversion of Solid waste into energy is the most resourceful process to combat landfill saturation and environmental impression. Bhutan, with an exponential rise in the waste production, Waste to Energy (WTE) conversion is an alternative solution for municipal solid waste management (MSW). The study for MSW composition and its energy potential analysis for Memelakha (Thimphu) and Pekarshing (Phuntsholing) landfills was done to resolve the waste management challenges in the country. The standard number of samples from two dumpsites were used to analyze for the waste characterization (waste composition, proximate analysis, chemical analysis) and high heating value (HHV) of MSW. MSW of two landfills showed that the main elemental constituents were Carbon and Oxygen with 17.26% and 9.97% by mass respectively for Pekarshing and 16.52% (Carbon) and 11.07% (Oxygen) by mass for Memelakha landfill. Based on the physio-chemical analysis of MSW, the average calorific HHV of MSW obtained were 10.028 MJ/kg (26.04% of coal energy) for Pekarshing dumpsite and 9.6 MJ/kg (24.94% of coal energy) for Memelakha. The analysis showed that by the year 2050 Memelakha landfill has the potential to generate the power of 8.85 Megawatt (MW) and 1.44 Megawatt (MW) for Pekarshing. For (WTE) conversion, incineration, pyrolysis, and gasification technologies are found suitable based on the current composition MSW of Bhutan. Furthermore, in terms of energy efficiency and percentage of wastage, the gasification process was the most feasible method for WTE conversion at two locations with a waste volume reduction of 80 to 90 percent at the landfill.


2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2021 ◽  
Author(s):  
Piotr Nowakowski ◽  
Mariusz Wala

Abstract Refuse-derived fuel (RDF) can be produced from combustible materials contained in municipal waste. After pre-treatment of waste it is possible shipping RDF a waste-to-energy plant (WtE). This article investigates energy and material flow of waste for different scenarios for production of RDF from bulky waste, separately collected waste, and mixed municipal solid waste (MSW). We compare the proportion of energy consumption in transportation, handling waste, and processing using data from the waste collection company in the South of Poland. The findings show the components of the reverse supply chain consuming the highest value of the energy. A model of material and energy flow has taken into consideration collection of waste and transportation by two categories of waste collection vehicles light commercial vehicles and garbage trucks. The shipping of RDF from pre-treatment facility uses – tipper semi-trailers and walking floor trailers. The findings of the study show production of RDF from municipal solid waste is consuming almost 10% of energy potential in RDF. Less energy is required for the production of RDF from bulky waste 2.2% – 4.8% or separately collected waste 1.7% – 4.1% depending on the efficiency of collection and selected vehicles. The transportation is consuming greatest portion of energy. For mixed municipal solid waste (MSW) it can reach 79%, for separated collection waste 90% and for bulky waste up to 92% of the total energy consumed. Comparing emissions for two categories of the collection vehicles there is no significant difference for the bulky waste collections. For mixed MSW and separately collected waste the emissions are higher for garbage trucks. As a recommendation for practitioners is optimization of routing to achieve higher collection rate for minimized route length. Transportation of RDF to WtE plant the vehicles with higher loading capacity are essential.


2021 ◽  
Vol 13 (21) ◽  
pp. 11665
Author(s):  
Rotimi A. Ibikunle ◽  
Isaac F. Titiladunayo ◽  
Basil O. Akinnuli

A software system that enhances the selection of appropriate power plant capacity that will convert combustible municipal solid waste (MSW) into energy was developed. The aggregate of waste to be converted was determined and the corresponding heating value was established. The capacities of steam power plants’ components required for the conversion were determined, using thermodynamic mathematical models. An algorithm based on models used to determine the energy potential, the power potential of MSW, the capacities of the components of the steam power plant, were translated into computer soft code using Java programming language; saturated steam and superheated steam tables, together with the thermodynamic properties of the power plant required were incorporated into the soft code. About 584 tons of MSW having a heating value of 20 MJ/kg was the quantity of waste experimented for energy generation. This information was input into the software as data and was processed. Then, the software was able to predict 3245.54 MWh energy potential for the quantity of waste, and electrical power potential of 40.54 MW. The capacities of the steam power plant components that were predicted include 100.35 MW of boiler power, 40.54 MW of turbine power, and 59.80 MW of condenser power. The methodology adopted will make it easy for the managers in the waste-to-energy sector to appropriately select the suitable capacity of the required steam power plant that can convert any quantify of MSW at any geographical location, without going through the engineering calculation and stress or rigor involved in the plant capacity design. Moreover, the accuracy obtained for the software is greater than 99%.


2021 ◽  
Vol 25 (1) ◽  
pp. 176-187
Author(s):  
Badrus Zaman ◽  
Budi Prasetyo Samadikun ◽  
Nurandani Hardyanti ◽  
Purwono Purwono

Abstract Municipal solid waste (MSW) is an energy resource with sufficient energy/calorific value, making it a suitable substitute for fuel. This study investigated the effect of air flow rate on the MSW calorific value, the hemicellulose content, and the MSW degradation rate in a biodrying process. Four biodrying reactors equipped with flowrate and temperature recorders were used in the study. The air flow rate was varied as follows: 0 L/min/kg, 2 L/min/kg, 4 L/min/kg, and 6 L/min/kg, corresponding to reactors R1, R2, R3, and R4, respectively. The calorific value, water content, hemicellulose content, organic C content, and total N were measured on day 1, day 15, and day 30. The results showed that the biodrying process could increase the calorific value by 55.3 %, whereas the control reactor could increase the calorific value by only 4.7 %. The highest calorific value was 17.63 MJ/kg, at an air flow rate of 4 L/min/kg. The air flow rate had a significant effect on increasing the calorific value (sig.<0.05). The highest temperature in the biodrying process was 41 °C. The final MSW moisture content was 27.28 %, resulting from R4. According to the statistical test results, the air flow rate had a significant influence on the water content parameters. Hemicellulose degradation due to air flow rate reached 80–85 %. The air flow rate did not significantly influence the hemicellulose degradation (sig.>0.05). The biodrying process is the suitable method to increase the calorific value of MSW while reducing its water content; thus, the process promotes the realization of waste to energy as refuse-derived fuel.


2021 ◽  
Vol 287 ◽  
pp. 125575
Author(s):  
Rabia Amen ◽  
Javaria Hameed ◽  
Gadah Albashar ◽  
Hafiz Waqas Kamran ◽  
Mansoor Ul Hassan Shah ◽  
...  

Author(s):  
A. H. Makled ◽  
E. J. Grotke

Plasma arc gasification is an emerging technology for generation of renewable energy and other by-products from a variety of waste. This bold technology is under development in a number of locations around the world, although it is too early to fully know if the technology is technically feasible and economically viable on a truly heterogeneous municipal waste stream like that found in the U.S. Plasma arc technology in the United States in other applications dates back approximately 40 years when it was utilized by NASA to test heat shield materials for spacecraft. In 1989, plasma arc technology was used in an iron melting furnace in Defiance, Ohio (USA). Plasma arc gasification has been used in municipal solid waste destruction since 1999 in Japan for destruction of solid waste and automobile shredder residue. Plasma arc gasification heats waste materials to temperatures in excess of 10,000 degrees Fahrenheit (°F) to break the molecular bonds and gasify the materials. This liberates the energy potential of the waste materials and melts the residue to an inert, glass-like slag, which may be used as an aggregate in construction and manufacturing operations. If this market can be developed, it will significantly reduce the need for landfill disposal in the future. St. Lucie County, Florida (USA), is in the process of negotiating with a developer for the construction of a plasma arc gasification facility that will process 1,000 tons per day of municipal solid waste. The facility may be the first large scale solid waste plasma arc processing facility in the United States. Camp Dresser & McKee is assisting St. Lucie County to negotiate the agreements for this project. The project is expected to be privately financed, so the County will not be putting any money at risk. In this paper, we will describe the plasma arc technology, present its historical applications, and discuss the St. Lucie project from initial conception to its current status.


2019 ◽  
Vol 125 ◽  
pp. 14009
Author(s):  
Priyo Adi Sesotyo ◽  
Muhammad Nur ◽  
Jatmiko Endro Suseno

The plasma gasification offers more benefits compared to the conventional gasification. Those benefits include the better environmental issue such as lower emission, variated feedstock and higher energy recovery, including hydrogen and waste heat. Waste to energy technology is developed as a means of waste management to obtain new and renewable energy, due to the increasingly amount of waste produced by the growing population. The feedstock use is municipal solid waste (MSW) from TPA Jatibarang in Semarang City, Central Java. Along with population growth, energy supply becoming a very crucial issue in the near future. Converting the waste to energy would overcome the two crucial issues at once. With high temperature, the plasma gas decompose the feedstock into its constituent element and within thermochemical equilibrium stoichiometry, the syngas was formed. This model was developed based on plasma arc technology and able to estimate the syngas composition, energy required for the reaction and also the CO2 emission. This study is to obtain the crucial parameter which was involved to get the highest of hydrogen, highest syngas yield, highest efficiencies along with lowest its emission. Results shows that, the use of 100% steam as gasifying agent and steam to waste ratio (SWR) of 34,48%, can produce 48,33% of H2, Syngas Yield is 9,26 Nm3/kg, Cold Gasification Efficiency is 58.60% and its emission is 0.864 kg/hr.


Sign in / Sign up

Export Citation Format

Share Document