Seasonal characterisation of municipal solid waste from Astana city, Kazakhstan: Composition and thermal properties of combustible fraction

2019 ◽  
Vol 37 (12) ◽  
pp. 1271-1281 ◽  
Author(s):  
Bexultan Abylkhani ◽  
Berik Aiymbetov ◽  
Almira Yagofarova ◽  
Diyar Tokmurzin ◽  
Christos Venetis ◽  
...  

This study presents the results of a seasonal municipal solid waste composition campaign, that took place over the period of September 2017 to June 2018 in the capital city of Kazakhstan, Astana. Four sampling campaigns were conducted in order to identify the seasonal variation of municipal solid waste composition, recyclables and energy potential materials, such as combustible fraction, useful for the evaluation of waste-to-energy potential. The combustible fraction was analysed for thermal fuel properties, such as proximate and elemental analyses and gross calorific value. The results over the four different seasons showed that the average recyclable fraction of municipal solid waste on a wet basis of 33.3 wt.% and combustibles fraction was 8.3 wt.%. The largest fraction was the organics (47.2 wt.%), followed by plastic (15.4 wt.%) and paper (12.5 wt.%). Small seasonal variations were observed for organics, paper, plastic and glass fractions. The highest values were found in summer for the organic waste, in spring for paper and plastic and autumn for glass. The recyclables fraction showed an absolute seasonal variation of 5.7% with a peak in the winter season (35.4%) and the combustibles fraction showed a seasonal variation between 8.3 wt.% to 9.4 wt.%. Finally, the average calorific value of the combustible fraction was estimated to be 21.6 MJ kg-1 on a dry basis.

Energy management is a very important concept from the point of view of economics, as it explains the energy generated from various sources in various dimensions and ways such as alternating current, high, low or medium voltage, high and low amps, time-variant etc., all these combinations can be used in smart ways. It is used to decide the amount of energy which is required and then is stored for the long as well as short terms to avoid power cut and failure issues. The municipal solid waste (MSW) is also one of the major issues which mainly increases due to the urban population. The conventional dumping and treatment techniques for the MSW have some major ecological difficulties. In this paper, a preliminary report has been presented for the Waste-to-energy conversions. This study also identifies the potential of calorific value from the municipal solid waste generated in the capital city of Uttarakhand (Dehradun). All the related and relevant information are used to analyze energy penetration through proper literature reviews of different research papers and articles.


2021 ◽  
pp. 0734242X2098560
Author(s):  
Faisal Zia Siddiqui ◽  
M Humam Zaim Faruqi ◽  
Suneel Pandey ◽  
Mohd Emran Khan

The enormous quantities of municipal solid waste (MSW) generation in Indian cities has emerged as a serious concern. In order to reduce the negative environmental impacts of MSW accumulation in dumpsites or unsecured landfills across India, various measures have been proposed to facilitate conversion of MSW into a valuable resource. One such measure is the immense potential for utilization of MSW as a source of energy. In this study, a comprehensive estimation of the energy potential of freshly dumped MSW has been conducted at a large unsecured landfill site in Okhla, Delhi, which is the capital city of India. Multiple regression models were developed to predict gross calorific value (GCV) and net calorific value (NCV) of MSW in terms of physical composition, proximate analysis and ultimate analysis of the waste. The developed models were found to give a reasonably good prediction of energy content of freshly dumped MSW in the landfill. Food waste, inerts, textile and paper were found to be the prime constituents of fresh MSW arriving at the landfill site. Based on the statistical analysis, volatile matter content and oxygen content of MSW were found to be non-significant terms in the energy content models derived using proximate analysis and ultimate analysis, respectively. The models developed in this study can be used to predict energy content of MSW at other landfill sites in India under similar climatic conditions and disposal practices.


2018 ◽  
Vol 14 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Krishna Bahadur Sodari ◽  
Amrit Man Nakarmi

 This research is carried out to assess the current status of municipal solid waste of municipalities of Nepal and its potential for energy recovery. During the year 2016, solid waste samples were collected by door-to-door collection method and the total energy content of the municipal waste was calculated using Bomb Calorimeter in the laboratory. During the study period, the total waste generated at Kathmandu metropolitan city was 566 tons per day with 0.3 kg per capita contribution. The major waste constituent was the organic with 67.77% of the total waste volume. Other bulk wastes were plastic and paper constituting 10% and 5% by volume respectively. Rest of the wastes (8%) was categorized as “other". In average, the total moisture content in the wastes was 49.93%. Total waste generation of all municipalities was found 1435 tons per day. The calorific value of the plastic wastes had highest energy content (40.61 MJ/kg). The organic (15.68 MJ/kg) and paper (15.61MJ/kg) wastes had similar energy content while the other wastes had slightly higher energy content (17.57MJ/kg). The net energy available and, thus, lost after dumping of the solid waste was 71,895,056 MJ which is equivalent to 4262 MWh which can run 52 MW plasma arc gasification power plant. The waste to energy potential of Kathmandu Metropolitan city was found to be 19 MW. Total reduction in GHG emission was found 220,690 kg CO2 eq kg per day.Journal of the Institute of Engineering, 2018, 14(1): 151-161


2020 ◽  
Vol 12 (18) ◽  
pp. 7425
Author(s):  
Seongmin Kang ◽  
Joonyoung Roh ◽  
Eui-chan Jeon

The greenhouse gas emissions of the waste incineration sector account for approximately 43% of the total GHG emissions and represent the majority of the CO2 emissions from waste in Korea. Improving the reliability of the GHG inventory of the waste incineration sector is an important aspect for the examination of global GHG emission management according to the Paris Agreement. In this study, we introduced a statistical approach to analyze seasonal changes through analysis of waste composition and CO2 concentration in Municipal Solid Waste incinerators and applied the methodology to one case study facility. The analysis results in the case study showed that there was no seasonal variation in waste composition and CO2 concentrations, except for wood. Wood is classified as biomass, and the GHG emissions caused by biomass incineration are reported separately, indicating that the effect of an MSW incinerator on GHG emissions is not significant. Therefore, the seasonal effect of CO2 concentration or waste composition may not be an impact when calculating GHG emissions from case study facilities’ MSW incinerators. This study proposed an approach for analyzing factors that affect the GHG inventory reliability by analyzing seasonal characteristics and variation through the statistical analysis, which are used for the calculation of the GHG emissions of an MSW incinerator.


2021 ◽  
Author(s):  
Piotr Nowakowski ◽  
Mariusz Wala

Abstract Refuse-derived fuel (RDF) can be produced from combustible materials contained in municipal waste. After pre-treatment of waste it is possible shipping RDF a waste-to-energy plant (WtE). This article investigates energy and material flow of waste for different scenarios for production of RDF from bulky waste, separately collected waste, and mixed municipal solid waste (MSW). We compare the proportion of energy consumption in transportation, handling waste, and processing using data from the waste collection company in the South of Poland. The findings show the components of the reverse supply chain consuming the highest value of the energy. A model of material and energy flow has taken into consideration collection of waste and transportation by two categories of waste collection vehicles light commercial vehicles and garbage trucks. The shipping of RDF from pre-treatment facility uses – tipper semi-trailers and walking floor trailers. The findings of the study show production of RDF from municipal solid waste is consuming almost 10% of energy potential in RDF. Less energy is required for the production of RDF from bulky waste 2.2% – 4.8% or separately collected waste 1.7% – 4.1% depending on the efficiency of collection and selected vehicles. The transportation is consuming greatest portion of energy. For mixed municipal solid waste (MSW) it can reach 79%, for separated collection waste 90% and for bulky waste up to 92% of the total energy consumed. Comparing emissions for two categories of the collection vehicles there is no significant difference for the bulky waste collections. For mixed MSW and separately collected waste the emissions are higher for garbage trucks. As a recommendation for practitioners is optimization of routing to achieve higher collection rate for minimized route length. Transportation of RDF to WtE plant the vehicles with higher loading capacity are essential.


2021 ◽  
Vol 13 (21) ◽  
pp. 11665
Author(s):  
Rotimi A. Ibikunle ◽  
Isaac F. Titiladunayo ◽  
Basil O. Akinnuli

A software system that enhances the selection of appropriate power plant capacity that will convert combustible municipal solid waste (MSW) into energy was developed. The aggregate of waste to be converted was determined and the corresponding heating value was established. The capacities of steam power plants’ components required for the conversion were determined, using thermodynamic mathematical models. An algorithm based on models used to determine the energy potential, the power potential of MSW, the capacities of the components of the steam power plant, were translated into computer soft code using Java programming language; saturated steam and superheated steam tables, together with the thermodynamic properties of the power plant required were incorporated into the soft code. About 584 tons of MSW having a heating value of 20 MJ/kg was the quantity of waste experimented for energy generation. This information was input into the software as data and was processed. Then, the software was able to predict 3245.54 MWh energy potential for the quantity of waste, and electrical power potential of 40.54 MW. The capacities of the steam power plant components that were predicted include 100.35 MW of boiler power, 40.54 MW of turbine power, and 59.80 MW of condenser power. The methodology adopted will make it easy for the managers in the waste-to-energy sector to appropriately select the suitable capacity of the required steam power plant that can convert any quantify of MSW at any geographical location, without going through the engineering calculation and stress or rigor involved in the plant capacity design. Moreover, the accuracy obtained for the software is greater than 99%.


2021 ◽  
Vol 25 (1) ◽  
pp. 176-187
Author(s):  
Badrus Zaman ◽  
Budi Prasetyo Samadikun ◽  
Nurandani Hardyanti ◽  
Purwono Purwono

Abstract Municipal solid waste (MSW) is an energy resource with sufficient energy/calorific value, making it a suitable substitute for fuel. This study investigated the effect of air flow rate on the MSW calorific value, the hemicellulose content, and the MSW degradation rate in a biodrying process. Four biodrying reactors equipped with flowrate and temperature recorders were used in the study. The air flow rate was varied as follows: 0 L/min/kg, 2 L/min/kg, 4 L/min/kg, and 6 L/min/kg, corresponding to reactors R1, R2, R3, and R4, respectively. The calorific value, water content, hemicellulose content, organic C content, and total N were measured on day 1, day 15, and day 30. The results showed that the biodrying process could increase the calorific value by 55.3 %, whereas the control reactor could increase the calorific value by only 4.7 %. The highest calorific value was 17.63 MJ/kg, at an air flow rate of 4 L/min/kg. The air flow rate had a significant effect on increasing the calorific value (sig.<0.05). The highest temperature in the biodrying process was 41 °C. The final MSW moisture content was 27.28 %, resulting from R4. According to the statistical test results, the air flow rate had a significant influence on the water content parameters. Hemicellulose degradation due to air flow rate reached 80–85 %. The air flow rate did not significantly influence the hemicellulose degradation (sig.>0.05). The biodrying process is the suitable method to increase the calorific value of MSW while reducing its water content; thus, the process promotes the realization of waste to energy as refuse-derived fuel.


2021 ◽  
Vol 287 ◽  
pp. 125575
Author(s):  
Rabia Amen ◽  
Javaria Hameed ◽  
Gadah Albashar ◽  
Hafiz Waqas Kamran ◽  
Mansoor Ul Hassan Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document