Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM2.5 and PM10

2017 ◽  
Vol 33 (7) ◽  
pp. 588-600 ◽  
Author(s):  
Erbao Guo ◽  
Henggen Shen ◽  
Lei He ◽  
Jiawen Zhang

In November 2015, the PM2.5 and PM10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM2.5 and PM10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM2.5 and PM10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM10 and PM2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM2.5 and PM10 in platforms were within 0.65–0.93, and fine particles were the dominant components.

2020 ◽  
Vol 29 (9) ◽  
pp. 1300-1315
Author(s):  
Yueming Wen ◽  
Jiawei Leng ◽  
Fei Yu ◽  
Chuck Wah Yu

In subway stations, the piston effect plays an important role in enhancing ventilation to improve subway environment and reduce energy consumption. However, it may induce negative impacts on environmental health and thermal comfort, i.e. air pollution and strong wind. Traditionally, the architecture and ventilation systems are designed separately, and normal ventilation design follows architectural layout. Actually, the architecture design can have a significant influence on the ventilation performance, e.g. airflow pattern. Therefore, this study aims to integrate the design pattern of the architecture with an appropriate ventilation system. A typical subway station of Nanjing (in China) was considered. A dynamic-mesh based computational fluid dynamics (CFD) method was adopted to simulate ventilation performance in the presence of piston effect. Field measurements were conducted to validate the numerical method. New measures were proposed from the perspectives of architectural design to improve the ventilation effect, including enlarging atrium space, adding atrium vents and funnel-shaped exits, etc. The numerical results show that the optimal architectural design could provide a significant improvement towards the airflow environment and ventilation efficiency while avoiding serious air pollution. The proposed integrated-design pattern could further facilitate the creation of an ‘energy-saving’ and ‘healthy’ underground space environment.


2010 ◽  
Vol 44-47 ◽  
pp. 3026-3030 ◽  
Author(s):  
Tsung Jung Cheng ◽  
Chih Yi Chang ◽  
Pei Ni Tsou ◽  
Ming Ju Wu ◽  
Yun Shu Feng

The study was conducted to evaluate the determinants of mass concentration of indoor particulate matter in a nursing home located in Taichung, Taiwan. PM2.5, PM10, temperature, relative humidity, CO, CO2, O3 and colony counts were collected in 2 bedrooms and their adjacent outdoor environments from November 2009 to January 2010. The results of multiple regression analysis suggested that the explanatory variables which included outdoor particle concentrations, indoor occupancy, different types of activities and ventilation accounted for 40.9% and 63.4% of the variance in the indoor PM2.5 concentration in Room A which is close to neighboring buildings and Room B which is close to main traffic, respectively. The explanatory variables accounted for 49.1% and 85.5% of the variance in the indoor PM10 concentration in Room A and B, respectively. Moreover, the result of correlation analysis showed that both indoor PM2.5 and PM10 concentrations were correlated to temperature, relative humidity and CO.


2020 ◽  

Although current circumstances pose challenges to foretelling the future consequences of coronavirus spread, we consider environmental load-related researches became more and more important nowadays perhaps as never before. Many experts believe that the increasingly dire public health emergency situation, policy makers and word leaders should make it possible that the COVID-19 outbreak contributes to a transition of sustainable consumption. With the purpose of contributing to rethink the importance of sustainability efforts, here we present total suspended particulates (TSP) results which represent traffic emission caused air pollution in the three most populous cities of Ecuador obtained before, during, and after the: (i) the traffic measures entered into force on state level; (ii) curfew entered into force on state level; (iii) and quarantine entered into force (in Guayaquil, and whole Guayas province). We documented significant decrease in TSP emissions (PM2.5 and PM10) compared to normal traffic operation obtained from some four lanes roads in Quito, Guayaquil, and Cuenca. The most remarkable fall in suspended particulate values (96.47% decrease in PM2.5) compared to emission observed before traffic measures occurred in Cuenca.


Author(s):  
Boris N. Filatov ◽  
Natalya I. Latyshevskaya ◽  
Natalya V. Krylova ◽  
Irina K. Gorkina ◽  
Yulya I. Velikorodnaya ◽  
...  

The presence of grinding, mixing, and fractionation of solid components of formulations leads to the formation of aerosols in the air of the working area with a wide range of dispersion of the solid phase - all this characterizes the organization of technological processes for the production of energy-intensive materials. The study aims to give a qualitative assessment of possible air pollution of the working area of energy-intensive materials production by nanoscale aerosols with a solid dispersed phase. The researchers carried out the sampling of the working area air and flushes from solid horizontal surfaces to produce energy-intensive materials. We carried out the sampling by forced circulation of the test air through the absorption devices of Polezhaev. Scientists used Triton TX-114 solution with a mass concentration of 2.0 mg/dm3 as an absorption medium. The researchers performed flushing from surfaces using cloth tampons moistened with Triton TX-114 solution with a mass concentration of 2.0 mg/dm3. We determined the particle sizes in the samples using NanotracULTRA (Microtrac). Scientists found aluminum and nitrocellulose particles with sizes from 36 to 102 nm in the air of the working area and flushes from horizontal surfaces. The study of the fractional composition of RDX and aluminum powders of the ASD-1 brand showed the presence of nanoscale particles in them. Nanoscale dust particles pollute the air of the working area and solid horizontal surfaces at certain stages of the production of energy-intensive materials. There are nanoscale particles in the composition of powders of some standard components of formulations. Flushes from solid horizontal surfaces are an adequate qualitative indicator of the presence of nanoaerosols in the air of the working area.


Author(s):  
Chao Zhang ◽  
Zhenyu Quan ◽  
Qincheng Wu ◽  
Zhezhen Jin ◽  
Joseph Lee ◽  
...  

Background: Air pollution in large Chinese cities has led to recent studies that highlighted the relationship between particulate matters (PM) and elevated risk of cardio-cerebrovascular mortality. However, it is unclear as to whether: (1) The same adverse relations exist in cities with relatively low levels of air pollution; and (2) the relationship between the two are similar across ethnic groups. Methods: We collected data of PM2.5 (PM with an aerodynamic diameter ≤ 2.5 µm) and PM10 (aerodynamic diameter ≤ 10 µm) in the Yanbian Korean Autonomous Prefecture between 1 January 2015 and 31 December 2016. Using a time-stratified case-crossover design, we investigated whether levels of particulate pollutants influence the risk of cardio-cerebrovascular disease mortality among ethnic Korean vs. ethnic Han residents residing in the Yanbian Korean Autonomous Prefecture. Results: Under the single air pollutant model, the odds ratios (ORs) of cardio-cerebrovascular disease were 1.025 (1.024–1.026) for each 10 μg/m3 increase in PM2.5 at lag0 day, 1.012 (1.011–1.013) for each 10 μg/m3 increase in PM10 at lag1 day. In the multi-pollutant model adjusted by PM10, SO2, and NO2, the ORs of cardio-cerebrovascular disease were 1.150 (1.145–1.155) for ethnic Koreans and 1.154 (1.149–1.158) for ethnic Hans for each 10 μg/m3 increase in PM2.5. In the multi-pollutant model adjusted by PM2.5, SO2, and NO2, the ORs of cardio-cerebrovascular disease were 1.050 (1.047–1.053) for ethnic Koreans and 1.041 (1.039–1.043) for ethnic Hans for each 10 μg/m3 increase in PM10. Conclusion: This study showed that PM2.5 and PM10 were associated with increased risks of acute death events in residential cardio-cerebrovascular disease in Yanbian, China.


2021 ◽  
Vol 237 ◽  
pp. 01011
Author(s):  
changwei Xiong ◽  
qingchang Chen

In the area of residential green belt planning, most planners pay attention to the landscape function of green belts, while few researchers consider the impact of green belt on the concentration of fine particulate matter in the air. Based on site investigation, information about plants, buildings and weather in the selected area were collected, combined with air pollution measurement, four CFD models with different green belt composition were built and simulated. The results showed that at the residential cluster scale, green belts had two effects on fine particles: blocking and agglomeration. Under the two effects, the role of green belts in reducing fine particulate pollution was not always positive, improper green belts could even aggravate air pollution. This study discussed the impact of different greenbelt composition on PM2.5 concentration in residential clusters by CFD simulation, providing theoretical and methodological support for green belt planning and healthy city planning.


2021 ◽  
Author(s):  
Patricia Tarín-Carrasco ◽  
Ulas Im ◽  
Camilla Geels ◽  
Laura Palacios-Peña ◽  
Pedro Jiménez-Guerrero

Abstract. Worldwide air quality has worsened in the last decades as a consequence of increased anthropogenic emissions, in particular from the sector of power generation. The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human health is unquestionable nowadays, producing mainly cardiovascular and respiratory diseases, morbidity and even mortality. These effects can even enhance in the future as a consequence of climate penalties and future changes in the population projected. Because of all these reasons, the main objective of this contribution is the estimation of annual excess premature deaths (PD) associated to PM2.5 on present (1991–2010) and future (2031–2050) European population by using non-linear exposure-response functions. The endpoints included are Lung Cancer (LC), Chronic Obstructive Pulmonary Disease (COPD), Low Respiratory Infections (LRI), Ischemic Heart Disease (IHD), cerebrovascular disease (CEV) and other Non-Communicable Diseases (other NCD). PM2.5 concentrations come from coupled chemistry-climate regional simulations under present and RCP8.5 future scenarios. The cases assessed include the estimation of the present incidence of PD (PRE-P2010), the quantification of the role of a changing climate on PD (FUT-P2010) and the importance of changes in the population projected for the year 2050 on the incidence of excess PD (FUT-P2050). Two additional cases (REN80-P2010 and REN80-P2050) evaluate the impact on premature mortality rates of a mitigation scenario in which the 80 % of European energy production comes from renewables sources. The results indicate that PM2.5 accounts for nearly 895,000 [95 % confidence interval (95 % CI) 725,000-1,056,000] annual excess PD over Europe, with IHD being the largest contributor to premature mortality associated to fine particles in both present and future scenarios. The case isolating the effects of climate penalty (FUT-P2010) estimates a variation +0.2 % on mortality rates over the whole domain. However, under this scenario the incidence of PD over central Europe will benefit from a decrease of PM2.5 (−2.2 PD/100,000 h.) while in eastern (+1.3 PD/100,000 h.) and western (+0.4 PD/100,000 h.) Europe PD will increase due to increased PM2.5 levels. The changes in the projected population (FUT-P2050) will lead to a large increase of annual excess PD (1,540,000, 95 % CI 1,247,000-1,818,000), +71.96 % with respect to PRE-P2010 and +71.67 % to FUT-P2010) due to the aging of the European population. Last, the mitigation scenario (REN80-P2050) demonstrates that the effects of a mitigation policy increasing the ratio of renewable sources in the energy mix energy could lead to a decrease of over 60,000 (95 % CI 48,500-70,900) annual PD for the year 2050 (a decrease of −4 % in comparison with the no-mitigation scenario, FUT-P2050). In spite of the uncertainties inherent to future estimations, this contribution reveals the need of the governments and public entities to take action and bet for air pollution mitigation policies.


Sign in / Sign up

Export Citation Format

Share Document