scholarly journals Habitat-Specific Clock Variation and Its Consequence on Reproductive Fitness

2019 ◽  
Vol 35 (2) ◽  
pp. 134-144
Author(s):  
Bala S. C. Koritala ◽  
Craig Wager ◽  
Joshua C. Waters ◽  
Ryan Pachucki ◽  
Benedetto Piccoli ◽  
...  

The circadian clock controls daily activities at the cellular and organismic level, allowing an organism to anticipate incoming stresses and to use resources accordingly. The circadian clock has therefore been considered a fitness trait in multiple organisms. However, the mechanism of how circadian clock variation influences organismal reproductive fitness is still not well understood. Here we describe habitat-specific clock variation (HSCV) of asexual reproduction in Neurospora discreta, a species that is adapted to 2 different habitats, under or above tree bark. African (AF) N. discreta strains, whose habitat is above the tree bark in light-dark (LD) conditions, display a higher rhythmicity index compared with North American (NA) strains, whose habitat is under the tree bark in constant dark (DD). Although AF-type strains demonstrated an overall fitness advantage under LD and DD conditions, NA-type strains exhibit a habitat-specific fitness advantage in DD over the LD condition. In addition, we show that allelic variation of the clock-controlled gene, Ubiquinol cytochrome c oxidoreductase (NEUDI_158280), plays a role in HSCV by modulating cellular reactive oxygen species levels. Our results demonstrate a mechanism by which local adaptation involving circadian clock regulation influences reproductive fitness.

2020 ◽  
Vol 27 ◽  
Author(s):  
Xinrui Li ◽  
Liang Ma ◽  
Ping Fu

: Mitochondria are potent source of cellular reactive oxygen species (ROS) and are vulnerable to oxidative damage. Mitochondria dysfunction could result in adenosine triphosphate (ATP) decrease and cell death. The kidney is an ATPconsuming organ, and the relationship between mitochondrial dysfunction and renal disease has been long noted. Mitochondrial targeting is a novel strategy for kidney diseases. At present, there are several ways to target mitochondria such as the addition of a triphenylphosphonium cation, mitochondria-targeted peptides, and nanocarrier. There are also a variety of choices for the payload, such as nitroxides, quinone derivates, vitamins and so on. This review summarized chemical and also clinical characteristics of various mitochondria-targeted antioxidants and focused on their application and perspectives in kidney diseases.


2018 ◽  
Vol 8 (6) ◽  
pp. 20180038 ◽  
Author(s):  
Nicolas M. Schmelling ◽  
Ilka M. Axmann

Precisely timing the regulation of gene expression by anticipating recurring environmental changes is a fundamental part of global gene regulation. Circadian clocks are one form of this regulation, which is found in both eukaryotes and prokaryotes, providing a fitness advantage for these organisms. Whereas many different eukaryotic groups harbour circadian clocks, cyanobacteria are the only known oxygenic phototrophic prokaryotes to regulate large parts of their genes in a circadian fashion. A decade of intensive research on the mechanisms and functionality using computational and mathematical approaches in addition to the detailed biochemical and biophysical understanding make this the best understood circadian clock. Here, we summarize the findings and insights into various parts of the cyanobacterial circadian clock made by mathematical modelling. These findings have implications for eukaryotic circadian research as well as synthetic biology harnessing the power and efficiency of global gene regulation.


2004 ◽  
Vol 287 (3) ◽  
pp. R551-R555 ◽  
Author(s):  
Marina R. Castillo ◽  
Kelly J. Hochstetler ◽  
Ronald J. Tavernier ◽  
Dana M. Greene ◽  
Abel Bult-Ito

The master circadian clock, located in the mammalian suprachiasmatic nuclei (SCN), generates and coordinates circadian rhythmicity, i.e., internal organization of physiological and behavioral rhythms that cycle with a near 24-h period. Light is the most powerful synchronizer of the SCN. Although other nonphotic cues also have the potential to influence the circadian clock, their effects can be masked by photic cues. The purpose of this study was to investigate the ability of scheduled feeding to entrain the SCN in the absence of photic cues in four lines of house mouse ( Mus domesticus). Mice were initially housed in 12:12-h light/dark cycle with ad libitum access to food for 6 h during the light period followed by 4–6 mo of constant dark under the same feeding schedule. Wheel running behavior suggested and circadian PER2 protein expression profiles in the SCN confirmed entrainment of the master circadian clock to the onset of food availability in 100% (49/49) of the line 2 mice in contrast to only 4% (1/24) in line 3 mice. Mice from line 1 and line 4 showed intermediate levels of entrainment, 57% (8/14) and 39% (7/18), respectively. The predictability of entrainment vs. nonentrainment in line 2 and line 3 and the novel entrainment process provide a powerful tool with which to further elucidate mechanisms involved in entrainment of the SCN by scheduled feeding.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wan-song Zong ◽  
Shu-han Zhang ◽  
Qian Wang ◽  
Yue Teng ◽  
Yu-zhen Liu ◽  
...  

Glutathione (GSH) plays crucial roles in regulating the hepatotoxicity of Microcystin-LR (MCLR) by inhibiting oxidative stress or by toxin conjugation. Based on MCLR conjugation product preparation and purification, the direct and indirect regulation pathways for GSH were fully evaluated. Protein phosphatase inhibition analysis verified that GSH conjugation was an effective pathway to regulate the inhibition effect of MCLR, while GSH had slight influence on the toxicity of MCLR. Research on oxidative stress showed that both regulation pathways could reduce the formation of reactive oxygen species (stimulated by MCLR and regulated by NADH oxidase) and regulate the adverse effects on antioxidant enzymes. By evaluating the contributions for both pathways, it could be found that the indirect pathway had significant contribution to eliminating cellular reactive oxygen species and regulating protein phosphatases inhibition, while the direct regulation pathway had moderate influence. As glutathione transferases facilitated the transformation of MCLR, the hepatotoxicity of MCLR could be effectively regulated by GSH conjugation pathway, especially with abundant exogenous GSH.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78626 ◽  
Author(s):  
Ciprian B. Anea ◽  
Maoxiang Zhang ◽  
Feng Chen ◽  
M. Irfan Ali ◽  
C. Michael M. Hart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document