Central and Peripheral Clock Control of Circadian Feeding Rhythms

2021 ◽  
pp. 074873042110458
Author(s):  
Carson V. Fulgham ◽  
Austin P. Dreyer ◽  
Anita Nasseri ◽  
Asia N. Miller ◽  
Jacob Love ◽  
...  

Many behaviors exhibit ~24-h oscillations under control of an endogenous circadian timing system that tracks time of day via a molecular circadian clock. In the fruit fly, Drosophila melanogaster, most circadian research has focused on the generation of locomotor activity rhythms, but a fundamental question is how the circadian clock orchestrates multiple distinct behavioral outputs. Here, we have investigated the cells and circuits mediating circadian control of feeding behavior. Using an array of genetic tools, we show that, as is the case for locomotor activity rhythms, the presence of feeding rhythms requires molecular clock function in the ventrolateral clock neurons of the central brain. We further demonstrate that the speed of molecular clock oscillations in these neurons dictates the free-running period length of feeding rhythms. In contrast to the effects observed with central clock cell manipulations, we show that genetic abrogation of the molecular clock in the fat body, a peripheral metabolic tissue, is without effect on feeding behavior. Interestingly, we find that molecular clocks in the brain and fat body of control flies gradually grow out of phase with one another under free-running conditions, likely due to a long endogenous period of the fat body clock. Under these conditions, the period of feeding rhythms tracks with molecular oscillations in central brain clock cells, consistent with a primary role of the brain clock in dictating the timing of feeding behavior. Finally, despite a lack of effect of fat body selective manipulations, we find that flies with simultaneous disruption of molecular clocks in multiple peripheral tissues (but with intact central clocks) exhibit decreased feeding rhythm strength and reduced overall food intake. We conclude that both central and peripheral clocks contribute to the regulation of feeding rhythms, with a particularly dominant, pacemaker role for specific populations of central brain clock cells.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Suil Kim ◽  
Douglas G McMahon

How daily clocks in the brain are set by light to local environmental time and encode the seasons is not fully understood. The suprachiasmatic nucleus (SCN) is a central circadian clock in mammals that orchestrates physiology and behavior in tune with daily and seasonal light cycles. Here, we have found that optogenetically simulated light input to explanted mouse SCN changes the waveform of the molecular clockworks from sinusoids in free-running conditions to highly asymmetrical shapes with accelerated synthetic (rising) phases and extended degradative (falling) phases marking clock advances and delays at simulated dawn and dusk. Daily waveform changes arise under ex vivo entrainment to simulated winter and summer photoperiods, and to non-24 hr periods. Ex vivo SCN imaging further suggests that acute waveform shifts are greatest in the ventrolateral SCN, while period effects are greatest in the dorsomedial SCN. Thus, circadian entrainment is encoded by SCN clock gene waveform changes that arise from spatiotemporally distinct intrinsic responses within the SCN neural network.


2019 ◽  
Vol 206 (2) ◽  
pp. 259-272 ◽  
Author(s):  
Charlotte Helfrich-Förster

Abstract Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila’s special case.


2010 ◽  
Vol 298 (5) ◽  
pp. R1409-R1416 ◽  
Author(s):  
Amy Warner ◽  
Preeti H. Jethwa ◽  
Catherine A. Wyse ◽  
Helen I'Anson ◽  
John M. Brameld ◽  
...  

The objective of this study was to determine whether the previously observed effects of photoperiod on body weight in Siberian hamsters were due to changes in the daily patterns of locomotor activity, energy expenditure, and/or feeding behavior. Adult males were monitored through a seasonal cycle using an automated comprehensive laboratory animal monitoring system (CLAMS). Exposure to a short-day photoperiod (SD; 8:16-h light-dark cycle) induced a significant decline in body weight, and oxygen consumption (V̇o2), carbon dioxide production (V̇co2), and heat production all decreased reaching a nadir by 16 wk of SD. Clear daily rhythms in locomotor activity, V̇o2, and V̇co2 were observed at the start of the study, but these all progressively diminished after prolonged exposure to SD. Rhythms in feeding behavior were also detected initially, reflecting an increase in meal frequency but not duration during the dark phase. This rhythm was lost by 8 wk of SD exposure such that food intake was relatively constant across dark and light phases. After 18 wk in SD, hamsters were transferred to a long-day photoperiod (LD; 16:8-h light-dark cycle), which induced significant weight gain. This was associated with an increase in energy intake within 2 wk, while V̇o2, V̇co2, and heat production all increased back to basal levels. Rhythmicity was reestablished within 4 wk of reexposure to long days. These results demonstrate that photoperiod impacts on body weight via complex changes in locomotor activity, energy expenditure, and feeding behavior, with a striking loss of daily rhythms during SD exposure.


1992 ◽  
Vol 263 (5) ◽  
pp. R1099-R1103 ◽  
Author(s):  
P. C. Zee ◽  
R. S. Rosenberg ◽  
F. W. Turek

The phase angle of entrainment of the circadian rhythm of the locomotor activity rhythm to a light-dark (LD) cycle was examined in young (2-5 mo old) and middle-aged (13-16 mo old) hamsters. An age-related phase advance in the onset of locomotor activity relative to lights off was seen during stable entrainment to a 14:10-h LD cycle. In addition, the effects of age on the rate of reentrainment of the circadian rhythm of locomotor activity were examined by subjecting young and middle-aged hamsters to either an 8-h advance or delay shift of the LD cycle. Middle-aged hamsters resynchronized more rapidly after a phase advance of the LD cycle than did young hamsters, whereas young hamsters were able to phase delay more rapidly than middle-aged hamsters. The age-related phase advance of activity onset under entrained conditions, and the alteration of responses in middle-aged hamsters reentraining to a phase-shifted LD cycle, may be due to the shortening of the free-running period of the circadian rhythm of locomotor activity with advancing age that has previously been observed in this species.


2012 ◽  
Vol 520 (5) ◽  
pp. 970-987 ◽  
Author(s):  
Christiane Hermann ◽  
Taishi Yoshii ◽  
Verena Dusik ◽  
Charlotte Helfrich-Förster

2021 ◽  
Author(s):  
Pierre-Yves Musso ◽  
Pierre Junca ◽  
Michael D Gordon

ABSTRACTIngestion of certain sugars leads to activation of fructose sensors within the brain of flies, which then sustain or terminate feeding behavior depending on internal state. Here, we describe a three-part neural circuit that links satiety with fructose sensing. We show that AB-FBl8 neurons of the Fan-shaped body display oscillatory calcium activity when hemolymph glycemia is high, and that these oscillations require synaptic input from SLP-AB neurons projecting from the protocerebrum to the asymmetric body. Suppression of activity in this circuit, either by starvation or genetic silencing, promotes specific drive for fructose ingestion. Moreover, neuropeptidergic signaling by tachykinin bridges fan-shaped body activity and Gr43a-mediated fructose sensing. Together, our results demonstrate how a three-layer neural circuit links the detection of two sugars to impart precise satiety-dependent control over feeding behavior.


2019 ◽  
Author(s):  
Deniz Ertekin ◽  
Leonie Kirszenblat ◽  
Richard Faville ◽  
Bruno van Swinderen

AbstractSleep is vital for survival. Yet, under environmentally challenging conditions such as starvation, animals suppress their need for sleep. Interestingly, starvation-induced sleep loss does not evoke a subsequent sleep rebound. Little is known about how starvation-induced sleep deprivation differs from other types of sleep loss, or why some sleep functions become dispensable during starvation. Here we demonstrate that downregulation of unpaired-2 (upd2, the Drosophila ortholog of leptin), is sufficient to mimic a starved-like state in flies. We use this ‘genetically starved’ state to investigate the consequences of a starvation signal on visual attention and sleep in otherwise well-fed flies, thereby sidestepping the negative side-effects of undernourishment. We find that knockdown of upd2 in the fat body is sufficient to suppress sleep while also increasing selective visual attention and promoting night-time feeding. Further, we show that this peripheral signal is integrated in the fly brain via insulin-expressing cells. Together, these findings identify a role for peripheral tissue-to-brain interactions in the simultaneous regulation of sleep and attention, to potentially promote adaptive behaviors necessary for survival in hungry animals.Author SummarySleep is important for maintaining both physiological (e.g., metabolic, immunological, and developmental) and cognitive processes, such as selective attention. Under nutritionally impoverished conditions, animals suppress sleep and increase foraging to locate food. Yet it is currently unknown how an animal is able to maintain well-tuned cognitive processes, despite being sleep deprived. Here we investigate this question by studying flies that have been genetically engineered to lack a satiety signal, and find that signaling from fat bodies in the periphery to insulin-expressing cells in the brain simultaneously regulates sleep need and attention-like processes.


2021 ◽  
pp. 074873042110312
Author(s):  
Rachel S. Herz ◽  
Erik D. Herzog ◽  
Martha Merrow ◽  
Sara B. Noya

Daily rhythms of behavior and neurophysiology are integral to the circadian clocks of all animals. Examples of circadian clock regulation in the human brain include daily rhythms in sleep-wake, cognitive function, olfactory sensitivity, and risk for ischemic stroke, all of which overlap with symptoms displayed by many COVID-19 patients. Motivated by the relatively unexplored, yet pervasive, overlap between circadian functions and COVID-19 neurological symptoms, this perspective piece uses daily variations in the sense of smell and the timing of sleep and wakefulness as illustrative examples. We propose that time-stamping clinical data and testing may expand and refine diagnosis and treatment of COVID-19.


2020 ◽  
Author(s):  
Clare C Rittschof ◽  
Benjamin E.R. Rubin ◽  
Joseph H. Palmer

Abstract Background: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. Results: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. Conclusions: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


Sign in / Sign up

Export Citation Format

Share Document