Delays are Self-enhancing: An Explanation of the East-West Asymmetry in Recovery from Jetlag

2021 ◽  
Vol 36 (2) ◽  
pp. 127-136
Author(s):  
Stephanie R. Taylor

There is evidence in mammals that recovering from jetlag after westward travel is faster than after eastward travel. To understand why, mathematical models have been used, along with theories of entrainment rooted in experimental evidence. The most complete understanding relies on detailed mathematical modeling, so it is helpful to develop an intuition about why there is an east-west asymmetry. One such intuition is that humans have long periods and therefore recover better when they can delay. Although this is part of the reason, it does not explain why short-period mice also recover from westward travel faster. Our goal is to provide a simple intuition consistent with detailed mathematical theories, but which does not require mathematical expertise to follow. Here, we present the intuition that westward travel is easier to recover from because of a simple principle: delays are self-enhancing.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
S. Ha ◽  
E. Dimitrova ◽  
S. Hoops ◽  
D. Altarawy ◽  
M. Ansariola ◽  
...  

Abstract Background At the molecular level, nonlinear networks of heterogeneous molecules control many biological processes, so that systems biology provides a valuable approach in this field, building on the integration of experimental biology with mathematical modeling. One of the biggest challenges to making this integration a reality is that many life scientists do not possess the mathematical expertise needed to build and manipulate mathematical models well enough to use them as tools for hypothesis generation. Available modeling software packages often assume some modeling expertise. There is a need for software tools that are easy to use and intuitive for experimentalists. Results This paper introduces PlantSimLab, a web-based application developed to allow plant biologists to construct dynamic mathematical models of molecular networks, interrogate them in a manner similar to what is done in the laboratory, and use them as a tool for biological hypothesis generation. It is designed to be used by experimentalists, without direct assistance from mathematical modelers. Conclusions Mathematical modeling techniques are a useful tool for analyzing complex biological systems, and there is a need for accessible, efficient analysis tools within the biological community. PlantSimLab enables users to build, validate, and use intuitive qualitative dynamic computer models, with a graphical user interface that does not require mathematical modeling expertise. It makes analysis of complex models accessible to a larger community, as it is platform-independent and does not require extensive mathematical expertise.



Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1569
Author(s):  
Jesús Montejo-Gámez ◽  
Elvira Fernández-Ahumada ◽  
Natividad Adamuz-Povedano

This paper shows a tool for the analysis of written productions that allows for the characterization of the mathematical models that students develop when solving modeling tasks. For this purpose, different conceptualizations of mathematical models in education are discussed, paying special attention to the evidence that characterizes a school model. The discussion leads to the consideration of three components, which constitute the main categories of the proposed tool: the real system to be modeled, its mathematization and the representations used to express both. These categories and the corresponding analysis procedure are explained and illustrated through two working examples, which expose the value of the tool in establishing the foci of analysis when investigating school models, and thus, suggest modeling skills. The connection of this tool with other approaches to educational research on mathematical modeling is also discussed.



2013 ◽  
Vol 18 (9) ◽  
pp. 571

This call for manuscripts is requesting articles that address how to use mathematical models to analyze, predict, and resolve issues arising in the real world.



Author(s):  
Terrence Fine

This chapter challenges the nearly universal reliance upon standard mathematical probability for mathematical modeling of chance and uncertain phenomena, and offers four alternatives. In standard practice, precise assignments are made inappropriately, even to the occurrences of events that may be unobservable in principle. Four familiar examples of chance or uncertain phenomena are discussed, about which this is true. The theory of measurement provides an understanding of the relationship between the accuracy of information and the precision with which the phenomenon under examination should be modeled mathematically. The model of modal or classificatory probability offers the least precision. Comparative probability, plausibility/belief functions and upper/lower probabilities are carefully considered. The selectable precision of these alternative mathematical models of chance and uncertainty makes for an improved range of levels of accuracy in modeling the empirical domain phenomena of chance, uncertainty, and indeterminacy. Knowledge of such models encourages further thought in this direction.



2019 ◽  
Vol 23 (3) ◽  
pp. 328-334
Author(s):  
E. Ya. Yanchevskaya ◽  
O. A. Mesnyankina

Mathematical modeling of diseases is an urgent problem in the modern world. More and more researchers are turning to mathematical models to predict a particular disease, as they help the most correct and accurate study of changes in certain processes occurring in society. Mathematical modeling is indispensable in certain areas of medicine, where real experiments are impossible or difficult, for example, in epidemiology. The article is devoted to the historical aspects of studying the possibilities of mathematical modeling in medicine. The review demonstrates the main stages of development, achievements and prospects of this direction.



Author(s):  
Olena Bibik ◽  
◽  
Oleksandr Popovich ◽  

The mode of operation of induction motors (IMs) affects their performance. In most cases, motors are optimally designed for steady state operation. When operating in other modes, additional attention is required to the problems of energy efficiency. Induction motors are the most common type of electromechanical energy converters, and a significant part of them operate under conditions of periodic changes in the load torque. The work is devoted to solving the problem of increasing the energy efficiency of asynchronous motors of electromechanical systems with a periodic load, including pumping and compressor equipment. The traditional solution to this problem for compressor equipment is the optimal design of an IM under static conditions, as well as the use of flywheels, the use of an IM with an increased slip value and controlled IM with a squirrel-cage rotor and with frequency converters. In this work, the modes of operation of asynchronous motors with periodic loading are investigated. For this, complex mathematical models are developed in the simulation system. Such models are effective in modeling taking into account periodic load changes: repetitive transient processes, their possible asymmetry and non-sinusoidality, increased influence of nonlinearity of electromagnetic parameters. In complex mathematical modeling, the mutual influence of the constituent parts of the electromechanical system is taken into account. Simulation allowed quantifying the deterioration in energy efficiency under intermittent loading, in comparison with static modes. Criteria for evaluating quasi-static modes have been developed and areas of critical decrease in efficiency have been determined. The paper proposes and demonstrates a methodology for solving this problem. For this purpose, tools have been created for the optimal design of asynchronous motors as part of electromechanical systems with periodic loading. These tools include: complex mathematical models of electromechanical systems with asynchronous motors with periodic load, mathematical tools for determining the parameters of quasi-steady-state modes, the methodology of optimal design based on the criterion of the maximum efficiency of processes under quasi-steady-state modes of operation. The possibilities, advantages and prospects of using the developed mathemati-cal apparatus for solving a number of problems to improve the efficiency of electric drives of compressor and pumping equipment are demonstrated. It is shown that by taking into account quasi-static processes, the use of complex mathematical models for the optimal design of asynchronous motors with a periodic load provides an in-crease in efficiency up to 8 ... 10%, relative to the indicators of motors that are de-signed without taking into account the quasi-static modes. The areas of intense quasi-steady-state modes are determined using the devel-oped criterion. In these areas, there is a critical decrease in efficiency compared to continuous load operation. A decrease in efficiency is associated with a decrease in the amount of kinetic energy of the rotating parts compared to the amount of electromagnetic energy. In connection with the development of a frequency-controlled asynchronous drive of mechanisms with a periodic load, the relevance of design taking into account the peculiarities of quasi-static has increased significantly. For example, a variable frequency drive of a refrigerator compressor or a heat pump can increase energy efficiency up to 40%, but at low speeds, due to a decrease in kinetic energy, the efficiency can decrease to 10 ... 15%, unless a special design methodology is applied. This problem can be solved by using the complex mathematical modeling tools developed in the article.



2014 ◽  
Vol 1040 ◽  
pp. 478-483
Author(s):  
M. Goreshnev ◽  
E. Litvishko

The article is devoted to the mathematical modeling of vacuum conductive timber drying. Analysis of known mathematical models allowed revealing their advantages and disadvantages. The modeling block diagram based on the drying periods is proposed. Lykov’s equations have been selected to solve heat and mass transfer problems. The comparison of experimental and calculated data has been conducted.



2012 ◽  
Vol 63 (5) ◽  
pp. 316-321 ◽  
Author(s):  
Fatiha Lakdja ◽  
Fatima Zohra Gherbi ◽  
Redouane Berber ◽  
Houari Boudjella

Very few publications have been focused on the mathematical modeling of Flexible Alternating Current Transmission Systems (FACTS) -devices in optimal power flow analysis. A Thyristor Controlled Series Capacitors (TCSC) model has been proposed, and the model has been implemented in a successive QP. The mathematical models for TCSC have been established, and the Optimal Power Flow (OPF) problem with these FACTS-devices is solved by Newtons method. This article employs the Newton- based OPF-TCSC solver of MATLAB Simulator, thus it is essential to understand the development of OPF and the suitability of Newton-based algorithms for solving OPF-TCSC problem. The proposed concept was tested and validated with TCSC in twenty six-bus test system. Result shows that, when TCSC is used to relieve congestion in the system and the investment on TCSC can be recovered, with a new and original idea of integration.



2021 ◽  
Vol 22 (5) ◽  
pp. 272-280
Author(s):  
S. G. Pushkov ◽  
L. L. Lovitsky ◽  
O. Y. Gorshkova ◽  
I. V. Malakhova

Problems of mathematical modeling of onboard air data systems errors are of paramount importance in pitot-static sources errors determination, air data systems evaluation in flight tests. The problems of development, identification and assessment of the mathematical models of errors adequacy acquire main importance in the modern technology of the air parameters true values determination, air data systems evaluation using satellite navigation systems, developed and applied in the practice of flight tests at JSC "FRI n.a. M. M. Gromov". This paper gives a general description of an air data systems estimation technology using satellite navigation systems. The principles of solving problems of aircraft data systems aerodynamic errors mathematical modeling are stated. The structure of mathematical models, factors of the aerodynamic errors, relationship of the solving problems of errors modeling within the framework of technology with a flight experiment plan are shown. Mathematical models parameters identification are based on a complex solving of the problems of a true air data parameters values and aerodynamic errors determination in flight tests. New results of mathematical modeling of errors in tests at high angles of attack in 2018 year of medium-range and short-range aircraft are presented. The results illustrate the technology effectiveness in solving the problems of flight tests at high angles of attack information support, aerodynamic errors modeling, air data systems estimation. The applied modeling methods make it possible to allocate in the mathematical models of pitot-static sources aerodynamic errors even the factors of very weak aerodynamic influence, comparable with the minimum pressure sensors instrumental errors.



1987 ◽  
Vol 77 (5) ◽  
pp. 1579-1601
Author(s):  
C. J. Langer ◽  
M. G. Bonilla ◽  
G. A. Bollinger

Abstract This study reports on the results of geological and seismological field studies conducted following the rare occurrence of a moderate-sized West African earthquake (mb = 6.4) with associated ground breakage. The epicentral area of the northwestern Guinea earthquake of 22 December 1983 is a coastal margin, intraplate locale with a very low level of historical seismicity. The principal results include the observation that seismic faulting occurred on a preexisting fault system and that there is good agreement among the surface faulting, the spatial distribution of the aftershock hypocenters, and the composite focal mechanism solutions. We are not able, however, to shed any light on the reason(s) for the unexpected occurrence of this intraplate earthquake. Thus, the significance of this study is its contribution to the observational datum for such earthquakes and for the seismicity of West Africa. The main shock was associated with at least 9 km of surface fault-rupture. Trending east-southeast to east-west, measured fault displacements up to ∼13 cm were predominantly right-lateral strike slip and were accompanied by an additional component (5 to 7 cm) of vertical movement, southwest side down. The surface faulting occurred on a preexisting fault whose field characteristics suggest a low slip rate with very infrequent earthquakes. There were extensive rockfalls and minor liquefaction effects at distances less than 10 km from the surface faulting and main shock epicenter. Main shock focal mechanism solutions derived from teleseismic data by other workers show a strong component of normal faulting motion that was not observed in the ground ruptures. A 15-day period of aftershock monitoring, commencing 22 days after the main shock, was conducted. Eleven portable, analog short-period vertical seismographs were deployed in a network with an aperture of 25 km and an average station spacing of 7 km. Ninety-five aftershocks were located from the more than 200 recorded events with duration magnitudes of about 1.5 or greater. Analysis of a selected subset (91) of those events define a tabular aftershock volume (26 km long by 14 km wide by 4 km thick) trending east-southeast and dipping steeply (∼60°) to the south-southwest. Composite focal mechanisms for groups of events, distributed throughout the aftershock volume, exhibit right-lateral, strike-slip motion on subvertical planes that strike almost due east. Although the general agreement between the field geologic and seismologic results is good, our preferred interpretation is for three en-echelon faults striking almost due east-west.



Sign in / Sign up

Export Citation Format

Share Document