Role of pH on stability and mechanical properties of gelatin films

2012 ◽  
Vol 27 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Michela Gioffrè ◽  
Paola Torricelli ◽  
Silvia Panzavolta ◽  
Katia Rubini ◽  
Adriana Bigi

The effect of the film-forming solution pH on the triple-helix content, thermal stability, and mechanical properties of gelatin films was investigated. The films were prepared from solutions at different pHs of type A pigskin gelatin, and their mechanical characteristics were determined. At pHs higher than 9 and lower than 5, Young’s modulus, E, and the stress at break, σb, of the films decreased significantly. Cross-linking with genipin reduced deformation at break, ϵb, and increased Young’s modulus. The intensity of the 1.1-nm X-ray diffraction reflection and the denaturation enthalpy decreased at these pHs, indicating that the triple helix reduced. Preliminary in vitro tests on the cross-linked samples indicated good cell proliferation and viability.

2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2006 ◽  
Vol 975 ◽  
Author(s):  
Andrei Stanishevsky ◽  
Shafiul Chowdhury ◽  
Nathaniel Greenstein ◽  
Helene Yockell-Lelievre ◽  
Jari Koskinen

ABSTRACTThe hydroxyapatite (HA) based bioceramic materials are usually prepared at high sintering temperatures to attain suitable mechanical properties. The sintering process usually results in a material which is compositionally and morphologically different from nonstoichiometric nano-crystalline HA phase of hard tissue. At the same time, HA particulates used as precursors in ceramic manufacturing are often very similar to the natural HA nanocrystals. It has been shown that synthetic nanoparticle HA (nanoHA) based materials improve the biological response in vitro and in vivo, but the information on mechanical properties of these materials is scarce.In this work we studied the HA nanoparticle (10 – 80 nm mean size) coatings with 30 – 70% porosity prepared by a dip-coating technique on Ti and TiN substrates. It has been found that the mechanical properties of HA nanoparticle coatings are strongly influenced by the initial size, morphology, and surface treatment of nanoparticles. The nanoindentation Young's modulus and hardness of as–deposited nanoHA coatings were in the range of 2.5 – 6.9 GPa and 80 – 230 MPa, respectively. The coatings were stable after annealing up to at least 600 °C, reaching the Young's modulus up to 23 GPa and hardness up to 540 MPa, as well as in simulated body fluids.


2001 ◽  
Vol 695 ◽  
Author(s):  
Yong Xiang ◽  
Xi Chen ◽  
Joost J. Vlassak

ABSTRACTThe mechanical properties of freestanding electroplated Cu films were determined by measuring the deflection of Si-framed, pressurized membranes. The films were deformed under plane-strain conditions. The pressure-deflection data are converted into stress-strain curves by means of simple analytical formulae. The microstructure of the Cu films was characterized using scanning electron microscopy and x-ray diffraction. The yield stress, Young's modulus, and residual stress were determined as a function of film thickness and microstructure. Both yield stress and Young's modulus increase with decreasing film thickness and correlate well with changes in the microstructure and texture of the films.


2017 ◽  
Vol 33 (1-2) ◽  
pp. 53 ◽  
Author(s):  
A. Kaouka ◽  
K. Benarous ◽  
A. Daas ◽  
S. A. Tsipas

The effects of Nb and Mo addition, with different contents, on the microstructure and some mechanical properties of Ti-6Al-4V alloy were investigated. Treatments were performed at various high temperatures about 1200 and 1300 °C for 3h using vacuum furnace as first treatment and using an argon atmosphere as second treatment. The samples were characterized by X-ray diffraction and the influence of processing temperature on microstructure was studied, the microstructural evolution was evaluated by optical microscopy and SEM. The results revealed that the Nb and Mo elements added to the titanium alloy stabilized the β phase and changed the lattice parameters of α phase. Microstructural observations, phase analysis shown that Ti-6Al-4V alloy contain single phase and increasing Nb and Mo contents the equiaxed grain is refined, and reduction in the prior β grain size. Moreover, Nb/Mo addition up to 10 wt.% increases the volume fraction of β phase in the microstructure. Some mechanical properties such as hardness, Young's modulus and fracture toughness were achieved and tensile test was performed at room temperature. Experimental results revealed good mechanical properties including a low Young's modulus and high deformability, the hardness values of the alloy is about 350-570 HV and the fracture toughness values K<sub>IC</sub> are ranging from 16.8 MPa m<sup>1/2</sup> to 28.5 MPa m<sup>1/2</sup> depending on Nb/Mo contents.


2012 ◽  
Vol 112 (3) ◽  
pp. 419-426 ◽  
Author(s):  
René B. Svensson ◽  
Philip Hansen ◽  
Tue Hassenkam ◽  
Bjarki T. Haraldsson ◽  
Per Aagaard ◽  
...  

Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons ( n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.


2015 ◽  
Vol 1085 ◽  
pp. 307-311 ◽  
Author(s):  
Yurii Sharkeev ◽  
Zhanna G. Kovalevskaya ◽  
Qi Fang Zhu ◽  
Margarita A. Khimich ◽  
Evgeniy A. Parilov

The results of investigation of the structure, physical and mechanical properties of the Ti-Nb alloy ingots with different composition obtained by arc melting are presented. X-ray diffraction and microstructural analyses were used. Microhardness was measured and the Young’s modulus of the alloys was evaluated. When the content of niobium in the alloy changes from 10 to 40 mass.%, phase composition of the alloy varies from α-and α'-phase (10 mass.% of Nb) to α'-, α''- and β-phases (25 mass.% of Nb), to the β-phase (40 mass.% of Nb). The alloy containing 40 mass.% Nb has the lowest Young’s modulus.


2021 ◽  
Author(s):  
Takuya Matsumoto ◽  
Sunichi Mori ◽  
Takuya Ohashi ◽  
Takashi Nishino

Abstract Cellulose nanofiber is one of the promising materials for its eco-friendliness as well as high mechanical performance and high functionalities. Nanocomposites with cellulose nanofiber matrixes and inorganic nanofillers also possess more excellent mechanical properties by the reinforcement effects of the nanofillers. The mechanical reinforcement effects depend in a large part on the interfacial interaction between the nanofillers and the cellulose matrixes and the dispersion of the nanofiller in the nanocomposites. The quantitative evaluation of the reinforcement effects is insufficient, which is desired for the material design of industrial use of the cellulose composites. In this study, we used nanocomposites of cellulose nanofibers and montmorillonite with various surface properties. Their mechanical properties were investigated through tensile tests and the stress transfer to the nanofillers in nanocomposites with various combinations of cellulose nanofibers and nanofillers was analyzed through the X-ray diffraction method. The strong correlation between Young’s modulus and stress transfer coefficients was revealed. In particular, the composites of TEMPO-oxide cellulose nanofiber and ion-exchanged montmorillonite possessed not only the highest Young’s modulus but also the largest stress transfer coefficients. The large mechanical reinforcement effect of the loaded montmorillonite filler was observed and was attributed to the electrostatic interaction of the interface between the cellulose matrix and the montmorillonite filler.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2949
Author(s):  
Marzieh Rabiei ◽  
Arvydas Palevicius ◽  
Amir Dashti ◽  
Sohrab Nasiri ◽  
Ahmad Monshi ◽  
...  

Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.


2021 ◽  
Vol 11 (9) ◽  
pp. 4025
Author(s):  
Dario Messenio ◽  
Marco Ferroni ◽  
Federica Boschetti

Glaucoma is the second cause of irreversible blindness in the world. Intraocular pressure (IOP) is a recognized major risk factor for the development and progression of glaucomatous damage. Goldmann applanation tonometry (GAT) is internationally accepted as the gold standard for the measurement of IOP. The purpose of this study was to search for correlations between Goldmann tonometry and corneal mechanical properties and thickness by means of in vitro tests. IOP was measured by the Goldmann applanation tonometer (GIOP), and by a pressure transducer inserted in the anterior chamber of the eye (TIOP), at increasing pressure levels by addition of saline solution in the anterior chamber of enucleated pig eyes (n = 49). Mechanical properties were also determined by inflation tests. The GAT underestimated the real measurements made by the pressure transducer, with most common differences in the range 15–28 mmHg. The difference between the two instruments, highlighted by the Bland–Altman test, was confirmed by ANOVA, normality tests, and Mann–Whitney’s tests, both on the data arranged for infusions and for the data organized by pressure ranges. Pearson correlation tests revealed a negative correlation between (TIOP-GIOP) and both corneal stiffness and corneal thickness. In conclusion, data obtained showed a discrepancy between GIOP and TIOP more evident for softer and thinner corneas, that is very important for glaucoma detection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Salloom ◽  
S. A. Mantri ◽  
R. Banerjee ◽  
S. G. Srinivasan

AbstractFor decades the poor mechanical properties of Ti alloys were attributed to the intrinsic brittleness of the hexagonal ω-phase that has fewer than 5-independent slip systems. We contradict this conventional wisdom by coupling first-principles and cluster expansion calculations with experiments. We show that the elastic properties of the ω-phase can be systematically varied as a function of its composition to enhance both the ductility and strength of the Ti-alloy. Studies with five prototypical β-stabilizer solutes (Nb, Ta, V, Mo, and W) show that increasing β-stabilizer concentration destabilizes the ω-phase, in agreement with experiments. The Young’s modulus of ω-phase also decreased at larger concentration of β-stabilizers. Within the region of ω-phase stability, addition of Nb, Ta, and V (Group-V elements) decreased Young’s modulus more steeply compared to Mo and W (Group-VI elements) additions. The higher values of Young’s modulus of Ti–W and Ti–Mo binaries is related to the stronger stabilization of ω-phase due to the higher number of valence electrons. Density of states (DOS) calculations also revealed a stronger covalent bonding in the ω-phase compared to a metallic bonding in β-phase, and indicate that alloying is a promising route to enhance the ω-phase’s ductility. Overall, the mechanical properties of ω-phase predicted by our calculations agree well with the available experiments. Importantly, our study reveals that ω precipitates are not intrinsically embrittling and detrimental, and that we can create Ti-alloys with both good ductility and strength by tailoring ω precipitates' composition instead of completely eliminating them.


Sign in / Sign up

Export Citation Format

Share Document