Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging

2020 ◽  
pp. 088532822095259
Author(s):  
Ke Ma ◽  
Yongbin Cheng ◽  
Xinran Wei ◽  
Daijun Chen ◽  
Xiaoli Zhao ◽  
...  

In this work, gold embedded chitosan nanoparticles (Au@CS NPs) were fabricated by a one-pot method. The benzaldehyde-terminated poly[(2-methacryloyloxy) ethyl phosphorylcholine] (PMPC) was applied to modification of the gold doped chitosan nanoparticles. The obtained Au@CS-PMPC NPs had the diameter of 135 nm with a narrow distribution. The size of the Au@CS-PMPC NPs, as well as the size of the embedded gold NPs, might be well-controlled by adjusting the feeding ratio between chitosan and HAuCl4. Furthermore, the Au@CS-PMPC NPs showed increased colloidal stability, high drug loading content, pH-responsive drug release, excellent biocompatibility and bright fluorescence emission. The results demonstrated that Au@CS-PMPC NPs showed a great potential for tumor therapy via the combination advantages of pH-sensitive controlled drug release and cellular fluorescence imaging.

RSC Advances ◽  
2021 ◽  
Vol 11 (48) ◽  
pp. 29986-29996
Author(s):  
Xiuxiu Qi ◽  
Hongmei Yan ◽  
Yingxue Li

A pH-sensitive core–shell nanoparticle (HMS@C18@PSDMA-b-POEGMA) was developed via a self-assembly process as the carrier of anticancer drug doxorubicin (DOX) for drug loading and controlled release.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 540 ◽  
Author(s):  
Črt Dragar ◽  
Tanja Potrč ◽  
Sebastjan Nemec ◽  
Robert Roškar ◽  
Stane Pajk ◽  
...  

The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.


2018 ◽  
Vol 6 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Xiao Duan ◽  
Ting Bai ◽  
Junjie Du ◽  
Jie Kong

We present a novel glutathione-responsive amphiphilic drug self-delivery (DSD) micelle with one-pot synthesis to synergistically address the problems of controlled drug release, degradability, drug tracing and in vivo accumulated toxicity.


2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Jessica Oliveira ◽  
Raquel Rodrigues ◽  
Lillian Barros ◽  
Isabel Ferreira ◽  
Luís Marchesi ◽  
...  

In this study, hydrophilic magnetic nanoparticles were synthesized by green routes using a methanolic extract of Rubus ulmifolius Schott flowers. The prepared magnetic nanoparticles were coated with carbon-based shell for drug delivery application. The nanocomposites were further chemically functionalized with nitric acid and, sequentially, with Pluronic® F68 (CMNPs-plur) to enhance their colloidal stability. The resulting material was dispersed in phosphate buffer solution at pH 7.4 to study the Doxorubicin loading. After shaking for 48 h, 99.13% of the drug was loaded by the nanocomposites. Subsequently, the drug release was studied in different working phosphate buffer solutions (i.e., PB pH 4.5, pH 6.0 and pH 7.4) to determine the efficiency of the synthesized material for drug delivery as pH-dependent drug nanocarrier. The results have shown a drug release quantity 18% higher in mimicking tumor environment than in the physiological one. Therefore, this study demonstrates the ability of CMNPs-plur to release a drug with pH dependence, which could be used in the future for the treatment of cancer "in situ" by means of controlled drug release.


RSC Advances ◽  
2018 ◽  
Vol 8 (65) ◽  
pp. 37433-37440 ◽  
Author(s):  
Huicong Zhang ◽  
Xuandong Wang ◽  
Peiyuan Wang ◽  
Rong Liu ◽  
Xuemei Hou ◽  
...  

Polydopamine-doped mesoporous silica nanocomposites (PMSNs) were controllably synthesized by a one-pot approach. They were demonstrated to be good biodegradability, pH-responsive drug release and targeting synergistic chemo-photothermal therapy.


2017 ◽  
Vol Volume 12 ◽  
pp. 3751-3766 ◽  
Author(s):  
Xudong Fu ◽  
Xinjun Wang ◽  
Shaolong Zhou ◽  
Yanyan Zhang

Sign in / Sign up

Export Citation Format

Share Document