Lidocaine-loaded reduced graphene oxide hydrogel for prolongation of effects of local anesthesia: In vitro and in vivo analyses

2021 ◽  
Vol 35 (8) ◽  
pp. 1034-1042
Author(s):  
Weifan Li ◽  
Guangqi Zhang ◽  
Xiaoxia Wei

Lidocaine is widely used as a local anesthetic for alleviation of post-operative pain and for management of acute and chronic painful conditions. Although several approaches are currently used to prolong the duration of action, an effective strategy to achieve neural blockage for several hours remains to be identified. In this study, a lidocaine-loaded Pluronic® F68-reduced graphene oxide hydrogel was developed to achieve sustained release of lidocaine. Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy confirmed the synthesis of Pluronic® F68-reduced graphene oxide. Transmission electron microscopy showed wrinkled, flat nanosheets with micelles attached. The developed hydrogel showed desirable pH, viscosity, adhesiveness, hardness, and cohesiveness for topical application. The ex vivo release study demonstrated the ability of the Pluronic® F68-reduced graphene oxide hydrogel to prolong release up to 10 h, owing to the strong π–π interactions between the graphene oxide and the lidocaine. In comparison with a commercial lidocaine ointment, the developed graphene oxide hydrogel showed sustained anesthetic effect in the radiant heat tail flick test and sciatic nerve block model. Thus, this study demonstrates the potential of using Pluronic® F68-reduced graphene oxide nanocarriers to realize prolonged effects of local anesthesia for effective pain management.

2D Materials ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 035013
Author(s):  
Md Tanvir Hasan ◽  
Bong Han Lee ◽  
Ching-Wei Lin ◽  
Ainsley McDonald-Boyer ◽  
Roberto Gonzalez-Rodriguez ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

AbstractA variety of bone-related diseases and injures and limitations of traditional regeneration methods require new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implantation in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds, and we evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, and the mechanical and chemical properties of scaffolds were characterized, showing three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. The rGO coating enhanced the mechanical strength of Col-rGO scaffolds to a greater extent than Col scaffolds by 2.8 times. Furthermore, Col-rGO scaffolds confirmed that graphene addition induced no cytotoxic effects and enhanced the viability and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) with 3D adherence and expansion. Finally, scaffold implantation into rabbit cranial bone defects for 12 weeks showed increased bone formation, confirmed by Hematoxylin–Eosin (H&E) and alizarin red staining. Overall, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


2020 ◽  
Vol 16 (1) ◽  
pp. 015008
Author(s):  
Christina Schmitt ◽  
Florian Rasch ◽  
François Cossais ◽  
Janka Held-Feindt ◽  
Ralph Lucius ◽  
...  

2019 ◽  
Vol 7 (3) ◽  
pp. 1011-1027 ◽  
Author(s):  
Xiaoqun Shi ◽  
Yang Wang ◽  
Haiyan Sun ◽  
Yujuan Chen ◽  
Xingzhen Zhang ◽  
...  

We fabricated novel rGO-based nanocomposites and analyzed their interaction with drug and proteins via a molecular dynamics study.


2020 ◽  
Vol 31 (41) ◽  
pp. 415101
Author(s):  
Ashwani Kumar Singh ◽  
Amar Nath Yadav ◽  
Saurabh Srivastav ◽  
Rishi Kumar Jaiswal ◽  
Amit Srivastava ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 1600-1610 ◽  
Author(s):  
Kostiantyn Turcheniuk ◽  
Tetiana Dumych ◽  
Rostyslav Bilyy ◽  
Volodymyr Turcheniuk ◽  
Julie Bouckaert ◽  
...  

Gold nanorods (Au NRs) are known for their efficient conversion of photon energy into heat, resulting in hyperthermia and suppression of tumor growths in vitro and in vivo.


2015 ◽  
pp. 1585 ◽  
Author(s):  
André Chwalibog ◽  
Slawomir Jaworski ◽  
Ewa Sawosz ◽  
Marta Kutwin ◽  
Mateusz Wierzbicki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document