Preparation of biocompatible wound dressings with dual release of antibiotic and platelet-rich plasma for enhancing infected wound healing

2021 ◽  
pp. 088532822199601
Author(s):  
Linying Shi ◽  
Fang Lin ◽  
Mou Zhou ◽  
Yanhui Li ◽  
Wendan Li ◽  
...  

The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds i n vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1β and IL-6), and enhance anti-inflammatory factors (TGF-β1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.

2017 ◽  
Vol 32 (6) ◽  
pp. 689-701 ◽  
Author(s):  
Mahsa Hoseinpour Najar ◽  
Mohsen Minaiyan ◽  
Azade Taheri

The development of an effective wound dressing with the ability to induce skin wound healing is a great challenge in medicine. Nanofibers are highly attractive for wound dressing preparation due to their properties such as hemostasis induction, good absorption of wound exudates, and facilitation of cell growth. Chitosan nanofibers have attracted great attention for application in wound dressings due to their accelerating effects on wound healing. In this study, arginine surface-modified chitosan nanofibers were successfully prepared by attachment of arginine molecules on the surface of chitosan nanofibers using sodium alginate through electrostatic interaction. The effect of pH on the amount of attached arginine was evaluated at three different pH values; 5, 6, and 7. Fourier-transform infrared spectroscopy and zeta potential of chitosan nanofibers before and after surface modification suggested the occurrence of the attachment of arginine to chitosan nanofibers. Scanning electron microscope images showed the nanofibrous structure of arginine surface-modified chitosan nanofibers with an average diameter ranging from 100 nm to 150 nm. The release of arginine from arginine surface-modified chitosan nanofibers gel showed a sustained release manner. The suitable viscosity and spreadability of arginine surface-modified chitosan nanofibers gel verified its easy application at the wound site. Arginine surface-modified chitosan nanofibers gel significantly improved the wound healing process including wound closure when tested in vivo using rat model. Additionally, histological examination and immunohistochemical studies showed the significant enhancement of the re-epithelialization, collagen deposition, and angiogenesis in the skin of the animal group treated with arginine surface-modified chitosan nanofibers gel compared with the other control groups. These results suggested that arginine surface-modified chitosan nanofibers gel could be introduced as an effective wound dressing.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 983
Author(s):  
Andreea-Teodora Iacob ◽  
Maria Drăgan ◽  
Oana-Maria Ionescu ◽  
Lenuța Profire ◽  
Anton Ficai ◽  
...  

Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms’adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.


2021 ◽  
Vol 30 (6) ◽  
pp. 482-490
Author(s):  
Fahimeh Farshi Azhar ◽  
Paria Rostamzadeh ◽  
Monireh Khordadmehr ◽  
Mehran Mesgari-Abbasi

Objective: Hard-to-heal wounds, such as pressure ulcers and diabetic ulcers, are a major challenge for wound dressings. The aim of this study was to develop a bioactive dressing based on polymers and natural materials with unique biological and therapeutic properties. Method: The dressing was composed of an active layer containing polyvinyl alcohol (PVA), honey, curcumin and keratin, and an upper layer with lower hydrophilicity comprising PVA to induce flexibility. Physicochemical properties of the dressing were characterised by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, swelling behaviour and antibacterial measurements. A wound healing study was performed using an experimental rat model and two different compositions of the bioactive dressing were compared with a commercial wound dressing (Comfeel, Coloplast, Denmark). Histopathological evaluation was conducted for this purpose. Results: Characterisation results showed that a smooth bilayer film with two homogenous but distinct layers was produced. The dressing also provided adequate moisture to the wound environment without infection and adhesion due to dryness occurring. Our results exhibited significant bactericidal activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and improved the wound healing process without any scarring. Histopathological findings demonstrated a significant higher healing rate in vivo together with well-formed epidermis, granulation tissue formation and tissue contraction, when compared with the commercial wound dressing. Conclusion: Our results demonstrated acceptable physical and healing effects for the novel bioactive wound dressing; however, more investigations are recommended.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 389 ◽  
Author(s):  
Mónica C. Guadarrama-Acevedo ◽  
Raisa A. Mendoza-Flores ◽  
María L. Del Prado-Audelo ◽  
Zaida Urbán-Morlán ◽  
David M. Giraldo-Gomez ◽  
...  

Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient’s discomfort and the risk of altering the formation of the new epithelium.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2959 ◽  
Author(s):  
Sindi P. Ndlovu ◽  
Kwanele Ngece ◽  
Sibusiso Alven ◽  
Blessing A. Aderibigbe

Wound care is a major biomedical field that is challenging due to the delayed wound healing process. Some factors are responsible for delayed wound healing such as malnutrition, poor oxygen flow, smoking, diseases (such as diabetes and cancer), microbial infections, etc. The currently used wound dressings suffer from various limitations, including poor antimicrobial activity, etc. Wound dressings that are formulated from biopolymers (e.g., cellulose, chitin, gelatin, chitosan, etc.) demonstrate interesting properties, such as good biocompatibility, non-toxicity, biodegradability, and attractive antimicrobial activity. Although biopolymer-based wound dressings display the aforementioned excellent features, they possess poor mechanical properties. Gelatin, a biopolymer has excellent biocompatibility, hemostatic property, reduced cytotoxicity, low antigenicity, and promotes cellular attachment and growth. However, it suffers from poor mechanical properties and antimicrobial activity. It is crosslinked with other polymers to enhance its mechanical properties. Furthermore, the incorporation of antimicrobial agents into gelatin-based wound dressings enhance their antimicrobial activity in vitro and in vivo. This review is focused on the development of hybrid wound dressings from a combination of gelatin and other polymers with good biological, mechanical, and physicochemical features which are appropriate for ideal wound dressings. Gelatin-based wound dressings are promising scaffolds for the treatment of infected, exuding, and bleeding wounds. This review article reports gelatin-based wound dressings which were developed between 2016 and 2021.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4368
Author(s):  
Zintle Mbese ◽  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yan Xu ◽  
Ze Lin ◽  
Lei He ◽  
Yanzhen Qu ◽  
Liu Ouyang ◽  
...  

Epithelial regeneration is an essential wound healing process, and recent work suggests that different types of exosomes (Exos) can improve wound repair outcomes by promoting such epithelial regeneration. Platelet-rich plasma (PRP) is known to facilitate enhanced wound healing, yet the mechanisms underlying its activity are poorly understood. To explore these mechanisms, we first isolated PRP-derived Exos (PRP-Exos). Using immortalized keratinocytes (HaCaT cells) treated with PBS, PRP, or PRP-Exos, we conducted a series of in vitro Cell Counting Kit-8 (CCK-8), EdU, scratch wound, and transwell assays. We then established a wound defect model in vivo in mice and assessed differences in the mRNA expression within these wounds to better understand the basis for PRP-mediated wound healing. The functions of PRP-Exos and USP15 in the context of wound healing were then confirmed through additional in vitro and in vivo experiments. We found that PRP-Exos effectively promoted the in vitro proliferation, migration, and wound healing activity of HaCaT cells. USP15 was further identified as a key mediator through which these PRP-Exos were able to promote tissue repair both in vitro and in vivo. At a mechanistic level, USP15 enhanced the functional properties of HaCaT cells by promoting EIF4A1 deubiquitination. Thus, PRP-Exos and USP15 represent promising tools that can promote wound healing via enhancing epithelial regeneration.


2021 ◽  
Vol 22 (19) ◽  
pp. 10563
Author(s):  
Dantong Zheng ◽  
Chongxing Huang ◽  
Xuhao Zhu ◽  
Haohe Huang ◽  
Chenglong Xu

Polydopamine (PDA) has been gradually applied in wound healing of various types in the last three years. Due to its rich phenol groups and unique structure, it can be combined with a variety of materials to form wound dressings that can be used for chronic infection, tissue repair in vivo and serious wound healing. PDA complex has excellent mechanical properties and self-healing properties, and it is a stable material that can be used for a long period of time. Unlike other dressings, PDA complexes can achieve both photothermal therapy and electro activity. In this paper, wound healing is divided into four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation, and re-epithelialization. Photothermal therapy can improve the bacteriostatic rate and remove reactive oxygen species to inhibit inflammation. Electrical signals can stimulate cell proliferation and directional migration. With low reactive oxygen species (ROS) levels, inflammatory factors are down-regulated and growth factors are up-regulated, forming regular collagen fibers and accelerating wound healing. Finally, five potential development directions are proposed, including increasing drug loading capacity, optimization of drug delivery platforms, improvement of photothermal conversion efficiency, intelligent electroactive materials and combined 3D printing.


2021 ◽  
Vol 11 (9) ◽  
pp. 890
Author(s):  
Andreea Barbu ◽  
Bogdan Neamtu ◽  
Marius Zăhan ◽  
Gabriela Mariana Iancu ◽  
Ciprian Bacila ◽  
...  

Chronic wounds represent a major public health issue, with an extremely high cost worldwide. In healthy individuals, the wound healing process takes place in different stages: inflammation, cell proliferation (fibroblasts and keratinocytes of the dermis), and finally remodeling of the extracellular matrix (equilibrium between metalloproteinases and their inhibitors). In chronic wounds, the chronic inflammation favors exudate persistence and bacterial film has a special importance in the dynamics of chronic inflammation in wounds that do not heal. Recent advances in biopolymer-based materials for wound healing highlight the performance of specific alginate forms. An ideal wound dressing should be adherent to the wound surface and not to the wound bed, it should also be non-antigenic, biocompatible, semi-permeable, biodegradable, elastic but resistant, and cost-effective. It has to give protection against bacterial, infectious, mechanical, and thermal agents, to modulate the level of wound moisture, and to entrap and deliver drugs or other molecules This paper explores the roles of alginates in advanced wound-dressing forms with a particular emphasis on hydrogels, nanofibers networks, 3D-scaffolds or sponges entrapping fibroblasts, keratinocytes, or drugs to be released on the wound-bed. The latest research reports are presented and supported with in vitro and in vivo studies from the current literature.


Cosmetics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Anton Shabunin ◽  
Vladimir Yudin ◽  
Irina Dobrovolskaya ◽  
Evgeny Zinovyev ◽  
Viktor Zubov ◽  
...  

An electrospinning technique was used for the preparation of a bilayered wound dressing consisting of a layer of aliphatic copolyamide nanofibers and a layer of composite nanofibers from chitosan and chitin nanofibrils filler. Processed dressings were compared with aliphatic copolyamide nanofiber-based wound dressings and control groups. Experimental studies (in vivo treatment of third-degree burns with this dressing) demonstrated that almost complete (up to 97.8%) epithelialization of the wound surface had been achieved within 28 days. Planimetric assessment demonstrated a significant acceleration of the wound healing process. Histological analysis of scar tissue indicated the presence of a significant number of microvessels and a low number of infiltrate cells. In the target group, there were no deaths or purulent complications, whereas in the control group these occurred in 25% and 59.7% of cases, respectively—and, in the copolyamide group, 0% and 11%, respectively. The obtained data show the high efficiency of application of the developed composite chitosan‒copolyamide wound dressings for the treatment of burn wounds.


Sign in / Sign up

Export Citation Format

Share Document