Optimizing torque rheometry parameters for assessing the rheological characteristics and extrusion processability of wood plastic composites

2017 ◽  
Vol 32 (1) ◽  
pp. 123-140 ◽  
Author(s):  
Chuanxin Feng ◽  
Zewen Li ◽  
Zhouyi Wang ◽  
Bingren Wang ◽  
Zhe Wang

The rheological behavior of wood plastic composites’ (WPCs’) melts is closely associated with extrusion processability, especially in highly filled systems. This study investigated the extrusion processibility and the effects of test conditions and typical WPC additives on the torque rheological behavior of wood flour/high-density polyethylene (WF/HDPE) mixing melts compounded using a twin-screw extruder. Both equilibrium melt temperature ( Te) and equilibrium torque ( Ma) at steady state increased with WF content. Addition of 2% lubricant TPW604 based on the total weight of WF and HDPE matrix resulted in a decrease in measured Te and Ma, showing a reduction in shear heating in mixing chamber. Adding 4% maleic anhydride grafted polyethylene (MAPE) as compatibilizer resulted in an increase in measured Te and Ma. In this study, adding lubricant TPW604 and/or compatibilizer MAPE can improve the extrusion processability of highly filled WF/HDPE melts. For a WPC system with preset compositions, its Ma value can be used to evaluate its extrusion processability. The results provide both knowledge about the compounding procedure and practical methods for evaluating the effectiveness of WPC additives, the flow performance, and extrusion processability of highly filled WPC melts.

2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Sahrim Ahmad

Water absorption is a major concern for natural fibers as reinforcement in wood plastic composites (WPCs). This paper presents a study on the comparison analysis of water absorption between two types of twin-screw extruders, namely, counterrotating and corotating with presence of variable antioxidants content. Composites of mixed fibres between rice husk and saw dust with recycled high-density polyethylene (rHDPE) were prepared with two different extruder machines, namely, counterrotating and corotating twin screw, respectively. The contents of matrix (30 wt%) and fibres (62 wt%) were mixed with additives (8 wt%) and compounded using compounder before extruded using both of the machines. Samples were immersed in distilled water according to ASTM D 570-98. From the study, results indicated a significant difference among samples extruded by counterrotating and corotating twin-screw extruders. The counterrotating twin-screw extruder gives the smallest value of water absorption compared to corotating twin-screw extruder. This indicates that the types of screw play an important role in water uptake by improving the adhesion between natural fillers and the polymer matrix.


2016 ◽  
Vol 840 ◽  
pp. 91-96 ◽  
Author(s):  
Bashree Abu Bakar ◽  
Mohamad Najmi Masri ◽  
Mohd Hazim Mohamad Amini ◽  
Mazlan Mohamed ◽  
Muhammad Azwadi Sulaiman ◽  
...  

Wood plastic composites (WPC) have been produced by compounding meranti wood flour (WF) with polypropylene (PP) copolymer using a twin-screw extruder. The meranti WF content was varied from 30 to 60 wt.%. The mechanical properties, i.e. tensile, flexural and impact of the composites were determined on injection-molded specimens. The tensile fractured surfaces were used to study the morphological properties of the composites. The result shows that the increment in WF content has given a significant improvement in modulus properties but at the expense of strength and toughness properties. A commercial maleic anhydride grafted polypropylene (MAPP) compatibilizer at 5 wt.% was incorporated into the PP40/WF60 formulation. The strength, stiffness and toughness properties were improved significantly in the presence of MAPP. The morphology of the composites was studied by scanning electron microscopy (SEM). The improvement of the fibre-matrix adhesion between the WF and PP matrix as revealed by SEM is believed to be one of the major reasons for the improved mechanical properties.


2007 ◽  
Vol 15 (5) ◽  
pp. 365-370 ◽  
Author(s):  
L.M. Matuana ◽  
S. Cam ◽  
K.B. Yuhasz ◽  
Q.J. Armstrong

This study examined both the use of acrylonitrile-butadiene-styrene (ABS) as a plastic matrix for wood-plastic composites (WPCs) and the effect of impact modification on the mechanical properties of ABS/wood-flour composites. Blends of ABS filled with wood flour (both pine and maple) were processed into profile shape using a conical twin-screw extruder and the mechanical properties of the resulting composites were characterised and compared to WPCs made with polyolefins (HDPE and PP) and rigid PVC matrices. Generally, WPCs made with ABS matrix outperformed their polyolefin counterparts in both flexural strength and modulus, whereas ABS-based composites had inferior strength but greater modulus than those made with rigid PVC. The impact strength of ABS/wood-flour composites was below that of wood plastic composites made with polyolefins. However, impact modification with acrylonitrile-butadiene-styrene terpolymers had some effect in toughening of the ABS/wood-flour composites.


FLORESTA ◽  
2004 ◽  
Vol 34 (1) ◽  
Author(s):  
Fábio Minoru Yamaji ◽  
Arnaud Bonduelle

Esta pesquisa utilizou materiais reciclados para a produção de compósitos plástico-madeira ou WPC (wood-plastic composites). A madeira utilizada na forma de pó e a serragem foram misturadas ao polietileno de baixa densidade - PEBD reciclado em uma extrusora monorrosca de 75 mm de diâmetro. Foram testadas formulações com 10%, 20%, 40% e 50% (em peso) de madeira. O teor de umidade inicial da madeira foi de 5,16% para o pó e 7,32% para a serragem. O conjunto de temperaturas da extrusora variou de 135ºC a 150ºC. Os resultados mostraram que a produção dos compósitos foi possível para as formulações com até 20% de madeira. USE OF SAWDUST IN WOOD-PLASTIC COMPOSITES PRODUCTION Abstract This research aimed the use of recycled materials to produce WPC (wood-plastic composites). The wood was used as sawdust and wood flour and the plastic material used was the low density polyethylene– LDPE recycled. The 75 mm single screw extruder was used in the composite’s production. Formulations with 10%, 20% 40% and 50% (in weight) of wood was tested. The wood humidity content was 5,16% for powder and 7,32% for sawdust. The extruder temperatures ranged from 135ºC to 150ºC. The results showed that the composite production was possible for the formulations up to 20% wood content.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 655-668
Author(s):  
Belgin Şeker Hirçin ◽  
Hüseyin Yörür ◽  
Fatih Mengeloğlu

Cast polyamide 6 (PA6G), trade name Castamide, is a semi-crystalline polymer widely used in the engineering plastics industry. There is a need to recycle valuable waste (W)-PA6G generated during part manufacturing of this polymer (approximately 30%). This study attempts to utilize W-PA6G in the manufacture of wood-plastic composites as a polymeric matrix. The effect of lignocellulosic filler type (FT) and filler content (FC) on the mechanical, morphological, and thermal properties of W-PA6G-based composites were investigated. During manufacturing, N-butyl benzene sulfonamide (N-BBSA) and lithium chloride (LiCl) were utilized as a plasticizer and a melt temperature-lowering salt, respectively. The rice husk (RH) and Uludağ fir wood flour (WF) filled W-PA6G-based composites were successfully manufactured using a combination of extrusion and injection molding. Compared to RH filled composites, WF filled composites provided better tensile and flexural properties (both strength and modulus) at 20% and 30% filler contents. Morphological study showed the nonhomogeneous distribution of fillers in the polymeric matrix. Lignocellulosic filler resulted in reduced melting temperature and crystallinity of W-PA6G-based composites. This reduction was more pronounced in RH filled composites.


Author(s):  
Guo Jiang ◽  
Kai Liao ◽  
Juan-Juan Han ◽  
De-Xian Feng ◽  
Han-Xiong Huang

Polypropylene (PP)/magnesium hydroxide (MDH) composite was melt-mixed using a twin-screw extruder. Two types of MDH were used, one with the modification of silane and another without. The rheological behavior was measured by capillary and dynamical rheometer. Microstructure of these composites was observed by SEM. Their flame retardancy was characterized by oxygen index and Horizontal/Vertical burning test. Results showed that shear viscosity and complex viscosity of PP with modified MDH were lower than that of PP with non-modified MDH. SEM results also showed a better dispersion of silane modified MDH in PP matrix. With the increase of MDH content, the oxygen index of composites was increased. When the content was increased to 60 wt%, the composite was UL94 HB and V-1.


2019 ◽  
Vol 41 (2) ◽  
pp. 573-584 ◽  
Author(s):  
Yuanbin Ma ◽  
Hui He ◽  
Bai Huang ◽  
Huaishuai Jing ◽  
Zijin Zhao

2017 ◽  
Vol 63 (3) ◽  
pp. 131-136 ◽  
Author(s):  
Hirokazu Ito ◽  
Shinji Ogoe ◽  
Masaki Okamoto ◽  
Shigehiko Suzuki ◽  
Yoichi Kojima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document