A Three-Dimensional Micromechanical Model of the Compressive Behavior of Unidirectional FRP Composites

1997 ◽  
Vol 10 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Guigen Zhang ◽  
Robert A. Latour
2018 ◽  
Vol 60 (7-8) ◽  
pp. 772-776 ◽  
Author(s):  
Jiayi Liu ◽  
Junmeng Zhou ◽  
Yu Wang ◽  
Jie Mei ◽  
Jialin Liu

Author(s):  
Vahid Tajeddini ◽  
Chien-hong Lin ◽  
Anastasia Muliana ◽  
Martin Lévesque

This study introduces a micromechanical model that incorporates detailed microstructures for analyzing the effective electro-mechanical properties, such as piezoelectric and permittivity constants as well as elastic moduli, of piezoelectric particle reinforced composites. The studied composites consist of polarized spherical piezoelectric particles dispersed into a continuous and elastic polymeric matrix. A micromechanical model generated using three-dimensional (3D) continuum elements within a finite element (FE) framework. For each volume fraction (VF) of particles, realization with different particle sizes and arrangements were generated in order to represent microstructures of a particle composite. We examined the effects of microstructural morphologies, such as particle sizes and distributions, and particle volume fractions on the overall effective electro-mechanical properties of the active composites. The overall electro-mechanical properties determined from the present micromechanical model were compared to those generated using the Mori-Tanaka, self-consistent, and simplified unit-cell micromechanical models.


2020 ◽  
Vol 8 (1) ◽  
pp. 29-46
Author(s):  
S. Rakshe ◽  
S. V. Nimje ◽  
S. K. Panigrahi

A review on optimization of adhesively bonded spar-wingskin joint (SWJ) of laminated fiber reinforced polymer (FRP) composites subjected to pull-off load is presented in this article using three-dimensional finite element analysis. Von Mises stress components have been computed across the width of joint at different interfaces viz. load coupler-spar, and load coupler-wingskin interfaces. Further, the weight of SWJ structure is considered as the objective function which needs to be minimized for optimization. In the first step, the material and lamination scheme of the FRP composite materials used for SWJ are optimized, and, in the second step, the geometrical parameters have been optimized on the basis of minimum von Mises stress and weight. Further, the effects of the material, lamination scheme, and geometrical parameters on the von Mises stress and weight have been validated using the Analysis of Variance (ANOVA) approach as prescribed by the Taguchi method. The results show that the material and spar thickness are the most significant factors influencing von Mises stress. The weight analysis reveals that there is a significant effect of change in material and wingskin thickness on SWJ performance. Suitable design recommendations have been made for SWJ in terms of material, lamination scheme and geometrical parameters.


2012 ◽  
Vol 591-593 ◽  
pp. 531-534 ◽  
Author(s):  
Wei Xing Xu ◽  
L.C. Zhang ◽  
Yong Bo Wu

Fibre-reinforced polymer (FRP) composites have been widely used in industry. However, the machining of FRP products is difficult, because of very different properties of the fibres and matrix. This paper discusses the development and implementation of a microstructure-based three-dimensional finite element model for the elliptic vibration-assisted (EVA) cutting of unidirectional FRP composites. The results showed that the EVA cutting has a good potential to the machining of FRP composites, featured a much reduced cutting force, better surface integrity and controllable chip size.


2019 ◽  
Vol 221 ◽  
pp. 01016
Author(s):  
Evgeniya Emelianova ◽  
Varvara Romanova ◽  
Olga Zinovieva ◽  
Ruslan Balokhonov ◽  
Aleksandr Zinoviev ◽  
...  

A micromechanical model is developed to predict the deformation behavior of additively manufactured aluminum alloys. Three-dimensional models of grain structures typical for different microregions of the melt pool are generated by the step-by-step packing method. A crystal plasticity-based constitutive model accounting for the elastic-plastic anisotropy of face-centered cubic crystals is employed to simulate the microscale deformation in an additively manufactured aluminum alloy under loading. The grain shape and texture effects on the plastic strain localization patterns are analyzed.


2006 ◽  
Vol 977 ◽  
Author(s):  
Rajdeep Sharma ◽  
Mary C. Boyce ◽  
Simona Socrate

AbstractIn this work we present a micromechanical model for two-phase ductile/brittle laminates that captures the macroscopic behavior, as well as the underlying micro-mechanisms of deformation and failure, in particular the synergy between the inelastic deformation mechanisms of crazing and shear yielding. The finite element implementation of our model considers a three-dimensional representative volume element (RVE), and incorporates continuum-based physics-inspired descriptions of shear yielding and crazing, along with failure criteria for the ductile and brittle layers. The interface between the ductile and brittle layers is assumed to be perfectly bonded. The model successfully explains the volume fraction effect on the micro and macromechanics of ductile/brittle microlaminates subjected to uniaxial tension.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
M. C. Sundarraja ◽  
P. Sriram ◽  
G. Ganesh Prabhu

The feasibility study on carbon fibre reinforced polymer (CFRP) fabrics in axial strengthening of hollow square sections (HSS) was investigated in this paper. CFRP was used as strips form with other parameters such as the number of layers and spacing of strips. Experimental results revealed that the external bonding of normal modulus CFRP strips significantly enhanced the load carrying capacity and stiffness of the hollow sections and also reduced the axial shortening of columns by providing external confinement against the elastic deformation. The increase in the CFRP strips thickness effectively delayed the local buckling of the above members and led to the inward buckling rather than outward one. Finally, three-dimensional nonlinear finite element modeling of CFRP strengthened hollow square sectionswas created by using ANSYS 12.0 to validate the results and the numerical results such as failure modes and load deformation behaviour fairly agreed with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document