Odontoblast Function Seen as the Response of Dentinal Tissue to Dental Caries

2001 ◽  
Vol 15 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Markku Larmas

Microbes are responsible for the initiation and maintaining of carious processes. They have an efficient machinery for dissolving crystalline hydroxyapatite. When initiating carious processes, microbial acid formation determines the rate of the process in enamel. When the process reaches dentin, the micro-environment changes. Dentinal fluid in dentin tubules is the liquid where dissolving products of apatites are destroyed. Inorganic composition of dentinal fluid, however, is not altered much during the carious process, indicating that a functional secretory domain is working to pump the dissolved calcium and phosphate ions out of the fluid. Activation of odontoblast alkaline phosphatase and dentin latent collagenases is the known cellular event during the carious process in dentin. Because the caries lesion is by definition undermining, this suggests that, in this degradation process, the extracellular compartment, crystalline hydroxyapatite is dissolved by microbial acids, and a mixture of proteinases degrades the organic matrix. The degradation products of collagen and other matrix components in dentinal fluid must be transported either through the caries lesion in the enamel to saliva or through the odontoblast to the pulp (active transport). This facilitates further processing of the degradation products intracellularly during the passage through the cell.

1979 ◽  
Vol 58 (2_suppl) ◽  
pp. 871-882 ◽  
Author(s):  
C. Robinson ◽  
H.D. Briggs ◽  
P.J. Atkinson ◽  
J.A. Weatherell

An investigation of the changes taking place in the enamel and the enamel organ during enamel development has been carried out by analyzing small samples of tissue dissected from developing incisors of rat and bovine incisors. Observations showed that the synthesis of the enamel matrix and its subsequent loss were associated chiefly with a change in the major matrix components. This consisted of a selective loss of amelogenin components prior to secondary mineralization. Before this loss, some increase in the proportion of smaller molecular weight components suggested the possibility of limited breakdown. Even at the earliest stages examined, significant concentration of mineral ions was present. This increased steeply after most of the organic matrix had been removed. The Ca/P ratio of this mineral was constant throughout development. The concentration of minor inorganic ions (F, Mg and CO3) decreased as the tissue developed and a tendency was observed for certain ions (F, 32PO4) to penetrate and concentrate in the enamel, apparently as a consequence of the lost matrix being replaced by water, just prior to the steep increase in mineral content of the tissue.


2000 ◽  
Vol 113 (3) ◽  
pp. 377-381 ◽  
Author(s):  
H.K. Vaananen ◽  
H. Zhao ◽  
M. Mulari ◽  
J.M. Halleen

Osteoclasts are multinucleated cells responsible for bone resorption. They have developed an efficient machinery for dissolving crystalline hydroxyapatite and degrading organic bone matrix rich in collagen fibers. When initiating bone resorption, osteoclasts become polarized, and three distinct membrane domains appear: a ruffled border, a sealing zone and a functional secretory domain. Simultaneously, the cytoskeleton undergoes extensive re-organisation. During this process, the actin cytoskeleton forms an attachment ring at the sealing zone, the membrane domain that anchors the resorbing cell to bone matrix. The ruffled border appears inside the sealing zone, and has several characteristics of late endosomal membrane. Extensive vesicle transport to the ruffled border delivers hydrochloric acid and proteases to an area between the ruffled border and the bone surface called the resorption lacuna. In this extracellular compartment, crystalline hydroxyapatite is dissolved by acid, and a mixture of proteases degrades the organic matrix. The degradation products of collagen and other matrix components are endocytosed, transported through the cell and exocytosed through a functional secretory domain. This transcytotic route allows osteoclasts to remove large amounts of matrix-degradation products without losing their tight attachment to underlying bone. It also facilitates further processing of the degradation products intracellularly during the passage through the cell.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4778
Author(s):  
Natalia P. Mishchenko ◽  
Elena A. Vasileva ◽  
Andrey V. Gerasimenko ◽  
Valeriya P. Grigorchuk ◽  
Pavel S. Dmitrenok ◽  
...  

Echinochrome A (Ech A, 1) is one of the main pigments of several sea urchin species and is registered in the Russian pharmacopeia as an active drug substance (Histochrome®), used in the fields of cardiology and ophthalmology. In this study, Ech A degradation products formed during oxidation by O2 in air-equilibrated aqueous solutions were identified, isolated, and structurally characterized. An HPLC method coupled with diode-array detection (DAD) and mass spectrometry (MS) was developed and validated to monitor the Ech A degradation process and identify the appearing compounds. Five primary oxidation products were detected and their structures were proposed on the basis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as 7-ethyl-2,2,3,3,5,7,8-heptahydroxy-2,3-dihydro-1,4-naphthoquinone (2), 6-ethyl-5,7,8-trihydroxy-1,2,3,4-tetrahydronaphthalene-1,2,3,4-tetraone (3), 2,3-epoxy-7-ethyl-2,3-dihydro-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (4), 2,3,4,5,7-pentahydroxy-6-ethylinden-1-one (5), and 2,2,4,5,7-pentahydroxy-6-ethylindane-1,3-dione (6). Three novel oxidation products were isolated, and NMR and HR-ESI-MS methods were used to establish their structures as 4-ethyl-3,5,6-trihydroxy-2-oxalobenzoic acid (7), 4-ethyl-2-formyl-3,5,6-trihydroxybenzoic acid (8), and 4-ethyl-2,3,5-trihydroxybenzoic acid (9). The known compound 3-ethyl-2,5-dihydroxy-1,4-benzoquinone (10) was isolated along with products 7–9. Compound 7 turned out to be unstable; its anhydro derivative 11 was obtained in two crystal forms, the structure of which was elucidated using X-ray crystallography as 7-ethyl-5,6-dihydroxy-2,3-dioxo-2,3-dihydrobenzofuran-4-carboxylic acid and named echinolactone. The chemical mechanism of Ech A oxidative degradation is proposed. The in silico toxicity of Ech A and its degradation products 2 and 7–10 were predicted using the ProTox-II webserver. The predicted median lethal dose (LD50) value for product 2 was 221 mg/kg, and, for products 7–10, it appeared to be much lower (≥2000 mg/kg). For Ech A, the predicted toxicity and mutagenicity differed from our experimental data.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Adele Bolognese ◽  
Anna Esposito ◽  
Michele Manfra ◽  
Lucio Catalano ◽  
Fara Petruzziello ◽  
...  

The (R)-3-methyl-1-((S)-3-phenyl-2-(pyrazine-2-carboxamido)propanamido)butyl-boronic acid, bortezomib (BTZ), which binds the 20S proteasome subunit and causes a large inhibition of its activity, is a peptidomimetic boronic drug mainly used for the treatment of multiple myeloma. CommercialBTZ, stabilized as mannitol derivative, has been investigated under the common conditions of the clinical use because it is suspected to be easily degradable in the region of its boronic moiety. CommercialBTZsamples, reconstituted according to the reported commercial instructions and stored at , were analyzed by high-field nuclear magnetic resonance spectroscopy in comparison with identical samples bubbled with air and argon, respectively. All the samples remained unchanged for a week. After a month, the air filled samples showed the presence of two main degradation products (6% of starting material), the N-(1-(1-hydroxy-3-methylbutylamino)-1-oxo-3-phenylpropan-2-yl) pyrazine-2-carboxamide (BTZ1; 5%, determined from NMR integration) and the (S)-N-(1-(3-methylbutanamido)-1-oxo-3-phenylpropan-2-yl)pyrazine-2-carboxamide (BTZ2; 1%, determined from NMR integration), identified on the basis of their chemical and spectroscopic properties. TheBTZ1andBTZ2finding suggests that, under the common condition of use and at , commercial BTZ-mannitol is stable for a week, and that, in time, it undergoes slow oxidative deboronation which partially inactivates the product. Low temperature and scarce contact with air decrease the degradation process.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Ranjith Krishna Pai ◽  
Andrónico Neira-Carrillo ◽  
Maria Soledad Fernandez ◽  
José Luis Arias

ABSTRACTMineralized biological concretions have attracted increasing interest because of their outstanding properties. The mineralized concretion of terrestrial isopods is an excellent model for acellular natural composite material. Before the molt terrestrial isopods resorb calcium from the posterior cuticle and store it in concretion within the cranial (head) and caudal (tail) ventral segments. This paper present for the first time an analysis of ultrastructural changes occurring in the caudal ventral segmental (CaVS) concretion of a terrestrial isopod Porcellius chilensis during their formation and degradation. The CaVS concretion of the woodlice Porcellius chilensis was analyzed with respect to their content of inorganic material. It was found that the concretion consists of amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. The CaVS concretion consists of structurally distinct stratum due to inhomogeneous solubility of ACC within the organic matrix that consists of calcareous knob with reticules elements. The organic matrix plays a role in the structural organization of the concretion and in the stabilization of ACC, which is unstable in vitro. We present an analysis of the distribution of minerals, elements, and organic matrix with in the CaVS concretion by using SEM, XRD, IR and EDS. The decalcification experiments exactly imitated the natural demineralization of the CaVS concretion of the Porcellius chilensis and it is thought that an inhomogeneous solubility of ACC and ACP within the CaVS concretion probably caused by variations in the stabilizing properties of matrix components.


2016 ◽  
Vol 06 (02) ◽  
pp. 057-062
Author(s):  
Ishani Vakil ◽  
Vabitha Shetty ◽  
Amitha M. Hegde

AbstractCaries initiation is associated with demineralization of the subsurface tooth enamel. At this early stage, the caries lesion is reversible via a remineralization process involving the diffusion of calcium and phosphate ions into the subsurface lesion to restore the lost tooth structure. However, children with high caries risk who have an increased and/or repeated episodes of demineralization require additional strategies to enhance remineralization. Today bioactive agents based on milk products have been developed in order to release elements that enhance remineralization of the enamel and dentine under cariogenic conditions. However, there is limited information on the remineralization potential of milk and milk products.


Holzforschung ◽  
2020 ◽  
Vol 74 (4) ◽  
pp. 391-399 ◽  
Author(s):  
Rebecka Ringman ◽  
Annica Pilgård ◽  
Klaus Richter

AbstractThe aim of this study was to investigate Rhodonia placenta expression patterns of genes involved in the depolymerisation during the non-enzymatic phase in acetylated (WAc) and furfurylated wood (WFA). During the 98-day-long exposure, WAc [22.6% weight per cent gain (WPG) on average] and WFA (69% WPG on average) lost no more than 3% mass while the untreated wood (WUn) reached 41% mass loss (ML) in 55 days. Expression of six genes putatively involved in the non-enzymatic degradation process were investigated. In conclusion, expression levels of alcohol oxidase Ppl118723 (AlOx1) and laccase Ppl111314 (Lac) were significantly higher in the modified wood materials (WMod) than in WUn, which is in accordance with previous results and may be explained by the absence of the degradation products that have been proposed to down-regulate the non-enzymatic degradation process. However, copper radical oxidase Ppl156703 (CRO1) and a putative quinate transporter Ppl44553 (PQT) were expressed at significantly lower levels in WMod than in WUn while quinone reductase Ppl124517 (QRD) and glucose oxidase Ppl108489 (GOx) were expressed at similar levels as in WUn. These results suggest that gene regulation in WMod is more complex than a general up-regulation of genes involved in the non-enzymatic degradation phase.


10.20883/178 ◽  
2016 ◽  
Vol 85 (4) ◽  
pp. 238
Author(s):  
Anita Frąckowiak ◽  
Bartosz Kamiński ◽  
Bartosz Urbaniak ◽  
Paweł Dereziński ◽  
Agnieszka Klupczyńska ◽  
...  

Introduction. The photostability is one of the most important properties of drugs. A comprehensive study of ofloxacin (OFX) and levofloxacin (LVX) photostability in aqueous solutions was performed. Ofloxacin is a chemotherapeutic agent belonging to the second generation fluoroquinolones and is a racemate of (R)-(+)-ofloxacin and (S)-(-)-ofloxacin (LVX).Material and Methods. Samples of OFX and LVX were subjected to stress conditions of UV irradiation using a mercury‑vapor lamp. The study involved development of enantioselective high‑performance liquid chromatography (HPLC) and high‑performance capillary electrophoresis (HPCE) methods for separation of OFX enantiomers and their degradation products. These methods were used to monitor the degradation process of OFX and LVX under irradiation and to determine the kinetics of degradation of these antibacterial agents. Moreover, the identification of photoproducts was also attempted. The structure of the main photoproducts was examined by mass spectrometry (MS).Results and Conclusions. Using HPLC method it was possible to observe two products of OFX degradation and only one for LVX, while using HPCE method eight products of OFX degradation and six of LVX were observed. Some of the photoproducts retain character of optically active compounds. The trend of the photodegradation of both tested compounds was described by autocatalytic reaction proceeding according to the Prout‑Tompkins model. Some of the products of the decomposition catalyze this reaction. The rate of degradation was similar for both enantiomers but t0.5 was slightly longer for LVX than OFX. Based on MS experiments the photodegradation products of the studied fluoroquinolones and possible pathways of UV induced decay were identified.


Sign in / Sign up

Export Citation Format

Share Document