A study of ofloxacin and levofloxacin photostability in aqueous solutions

10.20883/178 ◽  
2016 ◽  
Vol 85 (4) ◽  
pp. 238
Author(s):  
Anita Frąckowiak ◽  
Bartosz Kamiński ◽  
Bartosz Urbaniak ◽  
Paweł Dereziński ◽  
Agnieszka Klupczyńska ◽  
...  

Introduction. The photostability is one of the most important properties of drugs. A comprehensive study of ofloxacin (OFX) and levofloxacin (LVX) photostability in aqueous solutions was performed. Ofloxacin is a chemotherapeutic agent belonging to the second generation fluoroquinolones and is a racemate of (R)-(+)-ofloxacin and (S)-(-)-ofloxacin (LVX).Material and Methods. Samples of OFX and LVX were subjected to stress conditions of UV irradiation using a mercury‑vapor lamp. The study involved development of enantioselective high‑performance liquid chromatography (HPLC) and high‑performance capillary electrophoresis (HPCE) methods for separation of OFX enantiomers and their degradation products. These methods were used to monitor the degradation process of OFX and LVX under irradiation and to determine the kinetics of degradation of these antibacterial agents. Moreover, the identification of photoproducts was also attempted. The structure of the main photoproducts was examined by mass spectrometry (MS).Results and Conclusions. Using HPLC method it was possible to observe two products of OFX degradation and only one for LVX, while using HPCE method eight products of OFX degradation and six of LVX were observed. Some of the photoproducts retain character of optically active compounds. The trend of the photodegradation of both tested compounds was described by autocatalytic reaction proceeding according to the Prout‑Tompkins model. Some of the products of the decomposition catalyze this reaction. The rate of degradation was similar for both enantiomers but t0.5 was slightly longer for LVX than OFX. Based on MS experiments the photodegradation products of the studied fluoroquinolones and possible pathways of UV induced decay were identified.

2016 ◽  
Vol 85 (4) ◽  
pp. 238-244
Author(s):  
Anita Frąckowiak ◽  
Bartosz Kamiński ◽  
Bartosz Urbaniak ◽  
Paweł Dereziński ◽  
Agnieszka Klupczyńska ◽  
...  

Introduction. The photostability is one of the most important properties of drugs. A comprehensive study of ofloxacin (OFX) and levofloxacin (LVX) photostability in aqueous solutions was performed. Ofloxacin is a chemotherapeutic agent belonging to the second generation fluoroquinolones and is a racemate of (R)-(+)-ofloxacin and (S)-(-)-ofloxacin (LVX).Material and Methods. Samples of OFX and LVX were subjected to stress conditions of UV irradiation using a mercury-vapor lamp. The study involved development of enantioselective high-performance liquid chromatography (HPLC) and high-performance capillary electrophoresis (HPCE) methods for separation of OFX enantiomers and their degradation products. These methods were used to monitor the degradation process of OFX and LVX under irradiation and to determine the kinetics of degradation of these antibacterial agents. Moreover, the identification of photoproducts was also attempted. The structure of the main photoproducts was examined by mass spectrometry (MS).Results and Conclusions. Using HPLC method it was possible to observe two products of OFX degradation and only one for LVX, while using HPCE method eight products of OFX degradation and six of LVX were observed. Some of the photoproducts retain character of optically active compounds. The trend of the photodegradation of both tested compounds was described by autocatalytic reaction proceeding according to the Prout-Tompkins model. Some of the products of the decomposition catalyze this reaction. The rate of degradation was similar for both enantiomers but t0.5 was slightly longer for LVX than OFX. Based on MS experiments the photodegradation products of the studied fluoroquinolones and possible pathways of UV induced decay were identified.


1986 ◽  
Vol 49 (5) ◽  
pp. 383-388 ◽  
Author(s):  
PETER SPORNS ◽  
SUET KWAN ◽  
LAWRENCE A. ROTH

Oxytetracycline (OTC), also known commercially as Terramycin, was determined to be more stable in honey than in buffered aqueous solutions at similar pH values and temperatures. A rapid high performance liquid chromatography (HPLC) method was developed to detect and quantitate OTC using a 1:1 dilution (wt/wt) of honey samples in water. Using 355 nm as the wavelength of detection, amounts as low as 0.5 μg/ml could be detected in the above solution. The limits of detection were lowered considerably by a double extraction procedure.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


2021 ◽  
Author(s):  
Bobbi Stromer ◽  
Rebecca Crouch ◽  
Katrinka Wayne ◽  
Ashley Kimble ◽  
Jared Smith ◽  
...  

Standard methods are in place for analysis of 17 legacy munitions compounds and one surrogate in water and soil matrices; however, several insensitive munition (IM) and degradation products are not part of these analytical procedures. This lack could lead to inaccurate determinations of munitions in environmental samples by either not measuring for IM compounds or using methods not designed for IM and other legacy compounds. This work seeks to continue expanding the list of target analytes currently included in the US Environmental Protection Agency (EPA) Method 8330B. This technical report presents three methods capable of detecting 29 legacy, IM, and degradation products in a single High Performance Liquid Chromatography (HPLC) method with either ultraviolet (UV)-visible absorbance detection or mass spectrometric detection. Procedures were developed from previously published works and include the addition of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX); hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX); hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX); 2,4-diamino-6-nitrotoluene (2,4-DANT); and 2,6-diamino-4-nitrotoluene (2,6-DANT). One primary analytical method and two secondary (confirmation) methods were developed capable of detecting 29 analytes and two surrogates. Methods for high water concentrations (direct injection), low-level water concentrations (solid phase extraction), soil (solvent extraction), and tissue (solvent extraction) were tested for analyte recovery of the new compounds.


Author(s):  
V.L.N. Balaji Gupta Tiruveedhi ◽  
Venkateswara Rao Battula ◽  
Kishore Babu Bonige ◽  
Tejeswarudu B.

This research work was designed to establish and validate a novel stability indicating RP-HPLC method for the combined determination of Benidipine hydrochloride (BHE) and Nebivolol hydrochloride (NHE) in bulk and tablets, dependent on ICH guidelines.The assay method to analyse BHE and NHE was optimized with isocratic elution using acetonitrile: 0.1M acetate buffer (45:55, pH 5.1), Lichrospher ODS RP-18 column and flow pace of 1 ml/min. Total time for single run was 14 min. The injection quantity was 20μl, and was detected at 249nm. The method was verified on a concentration series of 1.25-10μg/ml (NHE) and 1.0-10μg/ml (BHE) for precision, accuracy and linearity. The LOD values were 0.059µg/ml and 0.028µg/ml for NHE and BHE, respectively. The LOQ values were 0.196µg/ml for NHE and 0.094µg/ml for BHE. The recovery percentages were 98.60-100.11% (BHE) and 98.94-101.50% (NHE) with relative standard deviation 0.250-0.694% (BHE) and 0.183-0.400% (NHE). The method was also observed to be efficient, and was sufficiently specific to measure BHE and NHE in the presence of stress-produced degradation products.


2020 ◽  
Vol 42 (4) ◽  
Author(s):  
Nguyen Mai Lan

Polycyclic Aromatic Hydrocarbons (PAHs) in aircraft soot are capable to distribute in the gas phase and particulate phase in chemical transformations in the atmosphere. The desorption of PAHs from the soot surface is a preliminary step in the study of the reactivity of particulate PAHs. The desorption kinetics of PAHs are measured from soot samples to determine desorption rate constants for different PAHs as a function of temperature and the binding energies between PAHs and soot. The kinetics of degradation of particulate PAHs were studied in the flow reactor. The soot samples previously deposited on a Pyrex tube are introduced into the reactor along its axis and the concentrations of PAHs adsorbed on soot are determined by the High-Performance Liquid Chromatography (HPLC) as a function of the desorption time. The results show a correlation between the size of PAHs and the thermodynamics of desorption: with the PAHs have the same number of carbon atoms, their energies of desorption are very similar and increase with this number. The activation energies EA and the number of carbon atoms in PAHs have a linear correlation. It is consistent with the additivity of the laws Van der Waals. The similarity between the activation energies of desorption of PAHs and the corresponding sublimation enthalpies is consistent with the similarity between the graphitic structure of soot and the structure of PAHs.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
A. El Yadini ◽  
H. Saufi ◽  
P. S. M. Dunlop ◽  
J. Anthony Byrne ◽  
M. El Azzouzi ◽  
...  

Supported titanium dioxide (TiO2) was investigated for the photodegradation of the insecticide fenamiphos in water. The photocatalyst was immobilised on borosilicate glass plates and the kinetics of degradation were studied in a stirred tank reactor under UV irradiation. Two types of TiO2, for example, Millennium PC500 (100% anatase) and Degussa P25 (80% anatase, 20% rutile), were used. Their activities have been based on the rates of insecticide disappearance. Experiments were investigated to evaluate the effect of pH and initial concentrations of fenamiphos as well as catalyst doses on the photocatalytic degradation of fenamiphos. Kinetic parameters were experimentally determined and an apparent first-order kinetic was observed. For photolysis process of fenamiphos, two photoproducts were identified and characterized using high performance liquid chromatography/mass spectrometry (HPLC/MS). The plausible mechanism of photolysis involved is the oxidation of sulfonamide group. In presence of photocatalyst TiO2, photodegradation was observed. Under identical conditions, Degussa P25 shows higher photocatalytic activity in regard to PC500 Millennium and complete degradation was observed after 180 min.


2018 ◽  
Vol 11 (1) ◽  
pp. 149-158 ◽  
Author(s):  
G.S. Shephard

Aflatoxins are widely recognised as important natural contaminants of a wide range of foods, including maize and peanuts (groundnuts), which form part of the staple diet in many countries of the developing world, especially in Africa. There is a frequent misconception based on solubility considerations and developed market surveys that aflatoxins do not occur in peanut oil. Thus, the use of peanut oil in human food is frequently overlooked as a source of aflatoxin exposure, yet artisanal oil extraction from contaminated peanuts in local facilities in the developing world results in carryover of these mycotoxins into the oil. Consequently, these peanut oils can have high contamination levels. This review highlights food safety concerns and addresses inter alia the analytical adaptations required to determine the polar aflatoxins in peanut oil. The determination of aflatoxins in peanut oil was first achieved by thin-layer chromatography, which was later mostly superseded by high-performance liquid chromatography (HPLC) with fluorescence detection, or later, by mass spectrometric detection. More recently, a specially modified HPLC method with immunoaffinity column clean-up and fluorescence detection has achieved official method status at AOAC International. In addition, the review deals with toxicology, occurrence and detoxification of contaminated oil. Although various methods have been reported for detoxification of peanut oil, the toxicity of degradation products, the removal of beneficial constituents and the effect on its organoleptic properties need to be considered. This review is intended to draw attention to this often overlooked area of food safety.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


Sign in / Sign up

Export Citation Format

Share Document