High-performance polymer nanocomposites having a biosafe amino acid by incorporating modified nanozirconia with a flame-retardant coupling agent

2014 ◽  
Vol 27 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Leila Mani
Author(s):  
Guangyi Hou ◽  
Sai Li ◽  
Jun Liu ◽  
Yun-Xuan Weng ◽  
Liqun Zhang

Introducing polymer nanoparticles into polymer matrices is an interesting topic, and the robustness of polymeric nanoparticles is very crucial for the properties of polymer nanocomposites (PNCs). In this study, by...


2008 ◽  
Vol 57 (4) ◽  
pp. 547-553 ◽  
Author(s):  
Stéphane Bredeau ◽  
Sophie Peeterbroeck ◽  
Daniel Bonduel ◽  
Michaël Alexandre ◽  
Philippe Dubois

2019 ◽  
pp. 089270571988094 ◽  
Author(s):  
Himanshu V Madhad ◽  
Dilip V Vasava

In polymer nanocomposites, graphene is possibly the most promising nanofiller. Graphene produces impressive properties for polymers at very low filler content, which makes it highly interesting in building high-performance materials compared to other classes of polymer nanocomposites. Graphene-modified polymer nanocomposites have attracted much attention in scientific literature because of the need of superior materials with desirable properties such as electrical, mechanical, thermal, flame retardant, and gas barrier. Frequent studies have been attempted to produce graphene–polyamide (G-PA) nanocomposites with novel and improved properties. Based on this review, one can identify the synthesis technique and preparation for G-PA nanocomposites, which can further be useful in numerous applications.


2020 ◽  
Vol 16 (2) ◽  
pp. 145-153
Author(s):  
Fathin Najihah Nor Mohd Hussin ◽  
Roswanira Abdul Wahab ◽  
Nursyafreena Attan

The advancement of nanotechnology has opened a new opportunity to develop nanocomposites using nanocellulose (NC) and nanoclay (NCl). Researchers have regarded these nanocomposites as promising substitutes for conventional polymers because of their characteristic and useful features, which include exceptional strength and stiffness, low weight, and low environmental impact. These features of NC and NCl explain their multifarious applications across many sectors. Here we review NC and NCl as well as various reinforced polymer composites that are made up of either of the two nanomaterials. The structural and physicochemical properties of NC and NCl are highlighted, along with the mechanical behavior and thermal properties of NC. Current nanomaterial hybrid biopolymers for the production of novel high-performance polymer nanocomposites are also discussed with respect to their mechanical properties.


2021 ◽  
Vol 17 ◽  
Author(s):  
Tushar T. Hawal ◽  
Maharudra S. Patil ◽  
Siddalinga Swamy ◽  
Raviraj M. Kulkarni

: Graphene as a nanofiller has gained tremendous importance in polymer nanocomposites for many applications. The attractive properties of graphene related to mechanical, electrical, and thermal domains pose a lucrative means of reinforcing the polymers to obtain the needed properties. The rise in the use of polymers supports this trend and urges the researchers to excavate the hidden plethora of nanocomposite materials for multifunctional applications. In this review, an overview is provided on graphene-based materials which have been used extensively in various fields, such as batteries, aerospace, automobile and biomedical fields. An increasing trend of graphene usage by many researchers as a nanofiller in polymer composites, its types, processing methods are highlighted with suitable applications to assimilate the updates in the development of graphene nanocomposites.


2020 ◽  
Vol 137 (48) ◽  
pp. 49586
Author(s):  
Peng Wang ◽  
Mengxing Li ◽  
Jiajia Zhang ◽  
Lei Dong ◽  
Hongbin Lu

Sign in / Sign up

Export Citation Format

Share Document