Synthesis of multifunctional liquid crystalline epoxy resin embedded cyclic-siloxane chain with Tg-less behavior and enhanced toughness

2020 ◽  
pp. 095400832093635
Author(s):  
Miyuki Harada ◽  
Yugo Yokoyama ◽  
Mitsukazu Ochi

A novel tetrafunctional mesogenic epoxy monomer with a cyclic-siloxane chain as a central part was successfully synthesized and characterized by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential scanning calorimetry, and polarized optical microscopy. The transition temperature and liquid crystallinity of cyclic-siloxane type mesogenic epoxy were compared with those of linear-siloxane type mesogenic epoxy. Moreover, epoxy thermosets were prepared based on the cyclic- and linear-siloxane type mesogenic epoxy monomers and 4,4′-diaminodiphenylethane. The effects of epoxy backbone moiety on thermal and mechanical properties were investigated in detail. As a result, the cyclic-siloxane type mesogenic epoxy thermoset shows glass transition temperature-less behavior and low coefficient of linear thermal expansion without a decrease in toughness.

2011 ◽  
Vol 284-286 ◽  
pp. 2284-2287
Author(s):  
Xiao Zhi He ◽  
Mei Tian ◽  
Yang Chen ◽  
Jing Zhao ◽  
Bao Yan Zhang

A series of new chiral side-chain liquid crystalline polymers with electron donor-acceptor action were prepared containing chiral monomer with donor group and nematic LC monomer with acceptor group. All polymers were synthesized by graft polymerization using polymethylhydro- siloxane as backbone. The mesomorphic properties were investigated by differential scanning calorimetry(DSC), polarizing optical microscopy(POM),thermogravimetric analyses(TGA) and X-ray diffraction measurements(XRD). The chemical structures of monomers and polymers were confirmed by Fourier transform infrared (FTIR), proton nuclear magnetic resonance spectra(1H NMR and 13CNMR). M1 showed nematic phase and M2 turned out cholesteric phase on heating and cooling cycle. Polymers P3~P8 were cholesteric phase. Experimental results demonstrated that the glass transition temperatures and isotropization temperatures and the ranges of the mesophase temperature increased with increasing the content of chiral agent. All of the obtained polymers showed high thermal stability.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Xifei Yu ◽  
Guo Zhang ◽  
Tongfei Shi ◽  
P.K. Dutta ◽  
Lijia An

AbstractThe functional polystyrene, (Cl-PS)2-CHCOOCH2CH2OH (designated as XPSt and coded P2) was prepared by ATRP at 1300C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4’ phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)2-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability (TGA). There was evidence for liquid crystalline properties in the resulting polymer derivative DXPSt (P4) as observed from POM study, which defines the alignment of chromophores into the polymers. The XRD study shows crystalline behaviour of the polymer derivative, P4. The polymer derivative, DXPSt (P5) does not show such behaviour and this may be due to the bonding of azomethine towards the short chain alcoholic telechelic alcoholic sides of the copolymer.


2011 ◽  
Vol 239-242 ◽  
pp. 3253-3256 ◽  
Author(s):  
Li Huo ◽  
Jun Gang Gao ◽  
Yong Gang Du

The curing, thermal and mechanical properties of bi-component system for bisphenol A epoxy resin (BPAER) modified by liquid crystalline Sulfonyl bis(4,1-phenylene)bis[4-(2,3-epoxypro pyloxy)benzoate] (p-SBPEPB), with 4,4'-diaminodiphenyl ether (DDE) as a curing agent, were investigated. The effect of the different liquid crystalline contents and the heating rate on curing reaction was discussed. The results show that the curing peak temperature decreases, curing rate increases, the glass transition temperature (Tg)and impact strength all increase with adding of liquid crystalline p-SBPEPB when the content is not over 8wt%.


2004 ◽  
Vol 59 (9) ◽  
pp. 537-542 ◽  
Author(s):  
C. Rama Chandra Prabhu ◽  
S. Lakshminarayana ◽  
V. G. K. M. Pisipatia

Two higher homologues of N(p-n-nonyloxybenzylidene)p-n-alkylanilines, viz. the 9O.m series with m = 12 and 16, are synthesised and characterised by thermal microscopy, differential scanning calorimetry and density studies. The compounds exhibit the phase variants smectic-A, smectic-B and smectic-G. Density studies reveal the first order nature of the isotropic to smectic-A and smectic-A to smectic-B transitions. An estimate of the pressure dependence of the phase transition temperature, using volume and enthalpy data, is presented. A comparison of these results with those reported on nO.m and other liquid crystalline compounds is presented.


2011 ◽  
Vol 415-417 ◽  
pp. 1395-1398
Author(s):  
Ji Wei Wang ◽  
Jun Qing Zi ◽  
Li Xian He ◽  
Guang Yong Chen ◽  
Yan Zhong Yang

Abstract. A series of liquid crystalline polysiloxanes were synthesized by cholesteric LC monomer and nematic LC monomer. The chemical structures and liquid-crystalline properties of the monomers and polymers were characterized by various experimental techniques including Fourier transform infrared (FTIR), proton nuclear magnetic resonance spectra (1H-NMR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) , X-ray diffraction measurements (XRD) and polarizing optical microscopy (POM). All the liquid crystalline polymers showed liquid crystalline properties with wide mesophase temperature ranges. For the polymers bearing only of one nematic LC monomer, it showed nematic phase, while others showed cholesteric phase. With increase the content of nematic LC monomer in the polymers from P1 to P7, the glass transition temperature and the isotropic temperature increased on heating circles. Reflection spectra of cholesteric mesophase of the series of polymers showed that the reflected wavelength shifted to long wavelength with increase content of nematic LC monomer in the polymers in the polymer systems, suggesting that helical pitch (P) become long.


e-Polymers ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Yanbin Wang ◽  
Guangming Lu ◽  
Wenjie Wang ◽  
Meng Cao ◽  
Zhonglin Luo ◽  
...  

AbstractA series of thermotropic liquid crystalline poly(amide imide)s (PAIs) with well-defined structure were prepared by the Yamazaki-Higashi phosphorylation method. To obtain the target polymers, several diimide diacid monomers (DIDAs) as mesogenic units were synthesized by the dehydration cyclization of aromatic anhydride with aliphatic 11-aminoundecanoic acid (AU). The chemical structure of these DIDAs and PAIs was confirmed via Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. Thermotropic liquid crystalline characteristics of the DIDAs and PAIs were investigated by differential scanning calorimetry (DSC), polarizing light microscopy (PLM) and X-ray diffraction (XRD) analysis. Encouragingly, all of these liquid crystalline PAIs exhibited good thermal stability, in which the decomposition temperatures are much higher than the melting temperatures of PAIs. Furthermore, the liquid crystalline PAIs can be dissolved into some common solvents such as dimethyl sulfoxide (DMSO) and m-cresol, which indicates these liquid crystalline PAIs could be processed not only by melting-processing but also by solution spin-coating.


2019 ◽  
Vol 28 (2) ◽  
pp. 100-111
Author(s):  
Omer Y Thayee Al-Janabi ◽  
Ahmed K Hussein ◽  
Emaad T Bakir Al-Tikrity ◽  
Osamah A Hussein ◽  
Hana’a K Salih

New liquid crystalline thiadiazole dibenzaldehyde monomers labeled as THDB1–THDB3 were successfully synthesized by alkylation of thiadiazole’s potassium salt with 4-(bromomethyl) benzaldehyde. A number of polymers consisting of thiadiazole and azomethine coded PTDAZ1–PTDAZ5 were synthesized via condensation reaction of the presynthesized monomers THDB1–THDB3 with aromatic diamines. The chemical structures of the prepared materials were confirmed using Fourier-transform infrared spectroscopy and proton nuclear magnetic resonance techniques. The liquid crystalline behavior of the studied monomers and polymers was examined by differential scanning calorimetry and hot stage polarized optical microscopy (POM) techniques. All these compounds were found to demonstrate mesomorphic transitions belonging to smectic and nematic liquid crystals. The studied monomers exhibited fan-like texture of smectic mesophase under POM cooling investigation. Fan-like texture of smectic and nematic mesophases was observed under POM for PTDAZ1 and PTDAZ2, while PTDAZ3 and PTDAZ4 revealed clay and schlieren textures of the smectic and nematic mesophases, respectively, and nematic texture has been found for the polymer PTDAZ5.


Author(s):  
Afzana Anwer ◽  
S. Eilidh Bedford ◽  
Richard J. Spontak ◽  
Alan H. Windle

Random copolyesters composed of wholly aromatic monomers such as p-oxybenzoate (B) and 2,6-oxynaphthoate (N) are known to exhibit liquid crystalline characteristics at elevated temperatures and over a broad composition range. Previous studies employing techniques such as X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) have conclusively proven that these thermotropic copolymers can possess a significant crystalline fraction, depending on molecular characteristics and processing history, despite the fact that the copolymer chains possess random intramolecular sequencing. Consequently, the nature of the crystalline structure that develops when these materials are processed in their mesophases and subsequently annealed has recently received considerable attention. A model that has been consistent with all experimental observations involves the Non-Periodic Layer (NPL) crystallite, which occurs when identical monomer sequences enter into register between adjacent chains. The objective of this work is to employ electron microscopy to identify and characterize these crystallites.


Author(s):  
C. J. Buchko ◽  
P. M. Wilson ◽  
Z. Xu ◽  
J. Zhang ◽  
S. Lee ◽  
...  

The synthesis of well-defined organic molecules with unique geometries opens new opportunities for understanding and controlling the organization of condensed matter. Here, we study dendrimers and macrocycles which are synthesized from rigid phenyl-acetylene spacer units, Both units are solubilized by the presence of tertiary butyl groups located at the periphery of the molecule. These hydrocarbon materials form crystalline and liquid crystalline phases which have been studied by differential scanning calorimetry, hot stage optical microscopy, and wide-angle x-ray scattering (WAXS).The precisely defined architecture of these molecules makes it possible to investigate systematic variations in chemical architecture on the nature of microstructural organization. Here we report on the transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high resolution electron microscopy (HREM) studies of crystalline thin films formed by deposition of these materials onto carbon substrates from dilute solution. Electron microscopy is very attractive for gaining structural information on new molecules due to the scarcity of material to grow single crystals suitable for conventional crystallography.


Sign in / Sign up

Export Citation Format

Share Document