Preparation and performance characterization of novel PVA blended with fluorinated polyimide membrane for gas separation

2020 ◽  
pp. 095400832095970
Author(s):  
Yunwu Yu ◽  
Peng Lin ◽  
Ye Zhao ◽  
Changwei Liu ◽  
Changwei Xu ◽  
...  

Fluorinated polyimide and PVA blending membranes were prepared by aqueous solution casting. We chose a poly (amic acid) ammonium salt (PAAS) in aqueous solution based on a novel green strategy as the PI precursor. The blending membranes were characterized by ATR-FTIR, DSC, TGA and gas permeation measurement. The ATR-FTIR analysis revealed that the imidization reaction of 6FPI based on aqueous precursor was completed at 180°C and hydrogen bonds formed between PVA and 6FPI. 6FPI showed good compatibility with PVA segment in blending membranes without obvious separated phase structure. The blending membranes showed high separation properties, for blending with 6FPI the gas separation performance stability was improved due to the hydrogen bonds between hydroxyl groups of PVA and carbonyl groups of 6FPI, and the rigid structure of 6FPI. At high operating pressure 10 bar, the CO2 permeability and CO2/N2 selectivity remained rather high. Using water as the solvent in the PAAS synthesis and membrane preparation is more environmentally friendly and less costly.

2020 ◽  
Vol 82 (2) ◽  
Author(s):  
Najihah Jamil ◽  
Nur Hidayati Othman ◽  
Munawar Zaman Shahrudin ◽  
Mohd Rizuan Mohd Razlan ◽  
Nur Hashimah Alias ◽  
...  

The biggest challenge surrounding application of polymeric membranes for gas separation is their trade–off between gas permeation and selectivity. Therefore, the use of mixed matrix membranes (MMMs) comprising inorganic materials embedded into a polymer matrix can overcome this issue. In this work, PES flat sheet membrane and MMMs consists of 10 wt.% of rGO/ZIF-8 hybrid nanofillers were fabricated via dry/wet phase inversion process. Dip‐coating technique was then used to deposit PEBAX selective layer onto the surface of rGO/ZIF-8 PES support. The effects of PEBAX coating solution concentrations (2, 3 and 4 wt.%) on the permselectivity of CO2 and CH4 were investigated. The as-prepared rGO/ZIF-8 nanofillers and MMMs were characterized by fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (SEM) prior to gas separation performance study. Gas permeation testing was carried out at operating pressure of 1, 3 and 5 bar using CO2 and CH4 gasses. It was observed that the prepared PES membranes and rGO/ZIF-8 PES MMMs did not have any selectivity towards the gases although their permeability was high. As the concentration of PEBAX coating solution increased, thicker coating layer was formed. Therefore, the permeability of CO2 rapidly dropped but the CO2/CH4 selectivity increased significantly up to 38.4.  Results indicated that the use of 2 wt.% of PEBAX was not effective to form homogenous coating layers on PES membrane and to cover any defects on membrane surfaces, thus, possessing low selectivity of CO2/CH4. The high gas separation performances obtained in this work was due to the synergistic effect rGO and ZIF-8 crystals. In the rGO/ZIF-8 MMMs, the dispersibility are enhanced due to the presence of distorted rGO sheets, while the ZIF-8 component ensure the porosity of the nanofillers and permit gas interactions with the metallic sites and functional groups on the organic linker. These sites facilitate the reactive adsorption leading to enhanced CO2 adsorption as compared to CH4.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 582
Author(s):  
Fernando Pardo ◽  
Sergio V. Gutiérrez-Hernández ◽  
Carolina Hermida-Merino ◽  
João M. M. Araújo ◽  
Manuel M. Piñeiro ◽  
...  

Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32 = 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.


2016 ◽  
Vol 29 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Yunwu Yu ◽  
Wenhao Pan ◽  
Xiaoman Guo ◽  
Lili Gao ◽  
Yaxin Gu ◽  
...  

Poly(arylene ether sulfone) (PES)–titanium dioxide (TiO2) hybrid membranes were prepared via solution blending method using TiO2 nanoparticles as inorganic filler. The chemical structure and thermal stability of the matrix polymer were characterized by proton nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermogravimetric analysis. The crystal structure, morphology, mechanical properties, and gas separation performance of hybrid membranes were characterized in detail. As shown in scanning electron microscopic images, TiO2 nanoparticles dispersed homogeneously in the matrix. Although the mechanical properties of hybrid membranes decreased certainly compared to the pure PES membranes, they are strong enough for gas separation in this study. All gas permeability coefficients of PES-TiO2 hybrid membranes were higher than pure PES membranes, attributed to the nanogap caused by TiO2 nanoparticles, for instance, oxygen and nitrogen permeability coefficients of Hybrid-3 (consists of PES with 4-amino-phenyl pendant group and hexafluoroisopropyl (Am-PES)-20 and TiO2 nanoparticles, 5 wt%) increased from 2.57 and 0.33 to 5.88 and 0.63, respectively. In addition, the separation factor increased at the same time attributed to the stimulative transfer effect caused by the interaction of hydroxyl groups on the TiO2 nanoparticle and polar carbon dioxide molecules.


1995 ◽  
Vol 28 (3P2) ◽  
pp. 1503-1508 ◽  
Author(s):  
Takumi Hayashi ◽  
Masayuki Yamada ◽  
Takumi Suzuki ◽  
Yuji Matsuda ◽  
Kenji Okuno

2011 ◽  
Vol 364 ◽  
pp. 272-277 ◽  
Author(s):  
S.M. Sanip ◽  
A.F. Ismail ◽  
P.S. Goh ◽  
M.N.A. Norrdin ◽  
T. Soga ◽  
...  

Mixed matrix membranes (MMM) combine useful molecular sieving properties of inorganic fillers with the desirable mechanical and processing properties of polymers. The current trend in polymeric membranes is the incorporation of filler-like nanoparticles to improve the separation performance. Most MMM have shown higher gas permeabilities and improved gas selectivities compared to the corresponding pure polymer membranes. Carbon nanotubes based mixed matrix membrane was prepared by the solution casting method in which the functionalized multiwalled carbon nanotubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt% on the gas separation properties were looked into. The as-prepared membranes were characterized for their morphology using field emission scanning electron microscopy (FESEM) and Transmission Electron Microscopy (TEM). The morphologies of the MMM also indicated that at 0.7 % loading of f-MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Triyanda Gunawan ◽  
Nurul Widiastuti ◽  
Hamzah Fansuri ◽  
Wan Norharyati Wan Salleh ◽  
Ahmad Fauzi Ismail ◽  
...  

This research involved carrying out a unique micro-mesoporous carbon particle incorporation into P84 co-polyimide membrane for improved gas separation performance. The carbon filler was prepared using a hard template method from zeolite and known as zeolite-templated carbon (ZTC). This research aims to study the loading amount of ZTC into P84 co-polyimide toward the gas separation performance. The ZTC was prepared using simple impregnation method of sucrose into hard template of zeolite Y. The SEM result showing a dispersed ZTC particle on the membrane surface and cross-section. The pore size distribution (PSD) of ZTC revealed that the particle consists of two characteristics of micro and mesoporous region. It was noted that with only 0.5 wt% of ZTC addition, the permeability was boosted up from 4.68 to 7.06 and from 8.95 to 13.15 barrer, for CO 2 and H 2 respectively when compared with the neat membrane. On the other hand, the optimum loading was at 1 wt%, where the membrane received thermal stability boost of 10% along with the 62.4 and 35% of selectivity boost of CO 2 /CH 4 and H 2 /CH 4 , respectively. It was noted that the position of the filler on the membrane surface was significantly affecting the gas transport mechanism of the membrane. Overall, the results demonstrated that the addition of ZTC with proper filler position is a potential candidate to be applicable in the gas separation involving CO 2 and H 2 .


Author(s):  
P. C. Tan ◽  
D. Y. Yiauw ◽  
G. H. Teoh ◽  
S. C. Low ◽  
Z. A. Jawad

Various methods have been explored to improve the gas separation performance of polyimide membrane for more viable industrial commercialization. Generally, polyimide membrane can be synthesized via two different methods: chemical imidization and thermal imidization routes. Due to the markedly different membrane synthesis conditions, the influence of imidization methods on the gas transport properties of resulting membrane is worthy of investigation. The polyimide produced from two imidization methods was characterized for its molecular weight. In overall, the molecular weight of thermally imidized polyimide was higher than that of chemically imidized one except ODPA-6FpDA:DABA as it was prone to depropagation at high temperature. It was observed that the chemically imidized ODPA-6FpDA:DABA membrane possessed better gas separation performance than the thermally imidized counterpart. In particular, it showed 12 times higher CO2 permeability (19.21 Barrer) with CO2/N2 selectivity of 5. After crosslinking, the CO2/N2 selectivity of the polyimide membrane was further improved to 11.8 at 6 bar of permeation pressure.


2020 ◽  
Vol 10 (2) ◽  
pp. 213-219
Author(s):  
Putu Doddy Sutrisna ◽  
Ronaldo Pangestu Hadi ◽  
Jonathan Siswanto ◽  
Giovanni J Prabowo

Biogas is a renewable energy that has been explored widely in Indonesia to substitute non-renewable energy. However, the presence of certain gas, such as carbon dioxide (CO2), can decrease the calorific value and generate greenhouse gas. Hence, the separation of CO2 from methane (CH4) occurs as a crucial step to improve the utilization of biogas. The separation of CH4/CO2 can be conducted using a polymeric membrane that needs no chemical, hence considered as an environmentally friendly technique. However, the utilization of polymeric membrane in gas separation processes is hampered by the trade-off between gas throughput and selectivity. To solve this problem, the incorporation of inorganic particles, such as Zeolitic Imidazolate Framework-8 (ZIF-8) particles, into the polymer matrix to improve the gas separation performance of the membrane has been conducted recently. In this research, ZIF-8 has been incorporated into Polysulfone matrix to form ZIF-8/Polysulfone-based membrane by simple blending and phase inversion techniques in flat sheet configuration. The pure gas permeation tests showed an increase in gas permeability (26 Barrer compared to 17 Barrer) after the inclusion of ZIF-8 particles with a slight decrease in CO2/CH4selectivity for particle loading more than 15wt. %. Therefore, the membrane with 15wt. % of particles showed the best performance in terms of gas selectivity. This result was due to the aggregation of ZIF-8 particles at particle loading higher than 15wt. %. Chemical analysis indicated an interaction between filler and polymer, and there were increases in the degree of crystallinity after the incorporation of ZIF-8.


2014 ◽  
Vol 69 (9) ◽  
Author(s):  
N. Jusoh ◽  
K. K. Lau ◽  
A. M. Shariff

The membrane process has advanced rapidly and continued to progress due to its advantages. Polyimide membrane has been widely applied for gas separation due to their promising permeability and selectivity. In this paper, the effect of heavy hydrocarbon (pentane) in removing bulk CO2 from methane using polyimide membrane was studied. Higher operating pressure and temperature demonstrated the increment of CO2 and CH4 permeance while CO2/CH4 selectivity decreased for both dry and wet conditions. As CO2 concentration increased, CO2 and CH4 permeance as well as CO2/CH4 selectivity enhanced. The presence of pentane in membrane separation contributed to the loss of CO2/CH4 selectivity.


Sign in / Sign up

Export Citation Format

Share Document