Performance assessment of energy efficient and eco-friendly turning of Nimonic C-263: A comparative study on MQL and cryogenic machining

Author(s):  
Prashant S Jadhav ◽  
Chinmaya P Mohanty

Nimonic C-263 is predominantly used in the manufacturing of heat susceptible intricate components in the gas turbine, aircraft, and automotive industries. Owing to its high strength, poor thermal conductivity, the superalloy is difficult to machine and causes rapid tool wear during conventional machining mode. Moreover, the unpleasant machining noise produced during machining severely disrupts the tool engineer’s concentration, thereby denying a precise and environment friendly machining operation. Hence, close dimensional accuracy, superior machined surface quality along with production economy, and pleasant work environment for the tool engineers is the need of an hour of the current manufacturing industry. To counter such issues, the present work attempts to compare and explore the machinability of two of the most popular machining strategies like minimum quantity lubrication (MQL) and cryogenic machining process during turning of Nimonic C-263 work piece in order to achieve an ideal machining environment. The machining characteristics are compared in terms of surface roughness (SR), power consumption (P), machining noise (S), nose wear (NW), and cutting forces (CF) to evaluate the impact of machining variables like cutting speed (Vc), feed (f), and depth of cut (ap) with a detailed parametric study and technical justification. Yet again, an investigation is conducted to compare both the machining strategies in terms of qualitative responses like chip morphology, total machining cost, and carbon emissions. The study revealed that cryogenic machining strategy is adequately proficient over MQL machining to deliver energy proficient and gratifying work environment for the tool engineers by reducing the cost of machining and improving their work efficiency.

INSIST ◽  
2016 ◽  
Vol 1 (1) ◽  
pp. 54
Author(s):  
Gusri Akhyar ◽  
Suryadiwansa Harun ◽  
Arinal Hamni

Abstract - Magnesium and magnesium alloys is one of materials that worldwide used on automotive components due to very good  strength to weight ratio, resistant to corrosion, lighter compare to steel materials. Other than that magnesium has an advantage in easy to form and good machinability.  Nevertheless, magnesium known as metal which is easy to burned because of magnesium has low melting point. To maintain magnesium from burning quickly when proses machining, it needs to use coolant or lubricant to reduce temperature. Using of coolant when machining process can reduce temperature on cutting tool and work piece material, while using of lubricant can reduce friction between the cutting tool and work piece mateial. However, using of coolant and lubricant can harm for the environment and also coolant difficult to destroyed. Therefore, an alternative method to reduce the temperature when machining of magnesium alloy is using  the rotary cutting tool system. In the rotary cutting tool system, the cutting tool has a time to experience cooling in the period time. Other than aspect of temperature, surface roughness values are representative of surface of quality of produced componens. In this research, surface roughness value of magnesium alloy of AZ31 observed in ranges of work piece cutting speed of  (Vw) 25, 50, 120, 160, 200 m/min, rotary cutting speed of (Vt) 25, 50, 75 m/min, feed rate of (f) 0,05  and 0,10 mm/rev, and depth of cut of 0.2 mm. The turning process was done by using two kinds of diameter of rotary cutting tools are 16 and 20 mm, and without applying of coolant. The results of the research showed that the minimum surface roughness value of machined surface was 0,62𝝻m by using insert with diameter of 16 mm, while the maximum surface roughness value of machined surface was 2,86 𝝻m by using insert with diameter of 20 mm. This result stated that the increase in the diameter of rotary cutting tool gives a significant effect on the produced surface roughness value. Factor of feed rate also gives a significant contribution on the surface roughness value of machined magnesium surface.  The increase in feed rate generated significantly surface roughness value as long as the trials experiments. The produced surface roughness values inversely proportional to the cutting speed of rotary cutting tool.Keywords - magnesium, rotary tool, surface roughness, turning. 


2016 ◽  
Vol 16 ◽  
pp. 7-15 ◽  
Author(s):  
Nirmal Kumar Mandal ◽  
Tanmoy Roy

Abstract. Kinetic energy of a machining process is converted into heat energy. The generated heat at cutting tool and work piece interface has substantial impact on cutting tool life and quality of the work piece. On the other hand, development of advanced cutting tool materials, coatings and designs, along with a variety of strategies for lubrication, cooling and chip removal, make it possible to achieve the same or better surface quality with dry or Minimum Quantity Lubrication (MQL) machining than traditional wet machining. In addition, dry and MQL machining is more economical and environment friendly. In this work, 20 no. of experiments were carried out under dry machining conditions with different combinations of cutting speed, feed rate and depth of cut and corresponding cutting temperature and surface roughness are measured. The no. of experiments is determined through Design of Experiments (DOE). Nonlinear regression methodology is used to model the process using Response Surface Methodology (RSM). Multi-objective optimization is carried using Genetic Algorithm which ensures high productivity with good product quality.


2021 ◽  
Vol 13 (2) ◽  
pp. 109-115
Author(s):  
Jogendra Kumar ◽  
◽  
Rajesh Kumar Verma ◽  

Nanomaterials are gaining extensive application in the manufacturing sector due to favorable properties. Its rapid growth in highly sensitive, robust, and lightweight sensors and biomedical components has attracted considerable attention worldwide. Nanomaterial uses with fiber-reinforced polymeric material have increased significantly. In order to manufacture structural components in a near-net shape, laminated nanocomposite machining is required. Due to the need for product assembly in mechanical structures, Milling is the primarily machining process in the manufacturing industry to create slots, channels, etc. The present work optimized the process variables affecting the Milling process by adopting the minimize criterion to control the delamination factor using the Taguchi method. The process parameters include cutting speed, feed, depth of cut, and filler material Graphene Oxide. The optimized conditions were found as cutting speed (Vc) 37.12 m/min, spindle feed (F) 80 mm/min, depth of cut (D) 0.5 mm and filler material Graphene Oxide (G) 1 wt.%. The percentage contribution of the process parameter on the delamination factor (Fd) was determined using the Analysis of Variance (ANOVA) method, and it has been found the feed rate (62.60%) is the most influencing factor. The delamination factor obtained in the confirmatory experiments carried out under optimized conditions was found lower than the Taguchi design test runs. The findings indicate that process parameter optimization under the given set of experimental conditions is effective for a manufacturing environment.


2018 ◽  
Vol 38 (1) ◽  
pp. 40-44
Author(s):  
Krzysztof Jarosz ◽  
Piotr Niesłony ◽  
Piotr Löschner

Abstract In this article, a novel approach to computer optimization of CNC toolpaths by adjustment of cutting speed vcand depth of cut apis presented. Available software works by the principle of adjusting feed rate on the basis of calculations and numerical simulation of the machining process. The authors wish to expand upon this approach by proposing toolpath optimization by altering two other basic process parameters. Intricacies and problems related totheadjustment of apand vcwere explained in the introductory part. Simulation of different variant of the same turning process with different parameter values were conducted to evaluate the effect of changes in depth of cut and cutting speed on process performance. Obtained results were investigated on the account of cutting force and tool life. The authors have found that depth of cut substantially affects cutting force, while the effect of cutting speed on it is minimal. An increase in both depth of cut and cutting speed affects tool life negatively, although the impact of cutting speed is much more severe. An increase in depth of cut allows for a more significant reduction of machining time, while affecting tool life less negatively. On the other hand, the adjustment of cutting speed helpsto reduce machining time without increasing cutting force component values and spindle load.


2014 ◽  
Vol 575 ◽  
pp. 431-436 ◽  
Author(s):  
M.S. Alajmi ◽  
S.E. Oraby

The impact of the cutting parameters; speed, feed, and depth of cut on the wear and the life of the cutting edge has long been a matter of debate among researchers. The cutting speed has long been agreed to have a prime influence in such a way that increasing speed leads to higher wear rate. Depth of cut has been concluded by majority of studies to have insignificant or negligible impact on edge wear and deformation. Despite its long established influence on the roughness of the machined surface, the effect of cutting feed on edge wear and deformation still requires more explanation. Cutting feed is a crucial parameter governing the product surface finish and dimensional accuracy and, therefore, its attitude during machining should be fully understood. This study presents experimental and modeling approach to detect the feed-wear functional interrelation considering various domains of the cutting speed. Results showed that the impact of the cutting feed is firmly associated with the level of cutting speed employed. Speed-feed interaction proved to be responsible for the performance of the cutting edge during machining.


Author(s):  
Yachao Wang ◽  
Chunhui Ji ◽  
Jing Shi ◽  
Zhanqiang Liu

Residual stresses in machined surfaces are often regarded as a determining factor of component service life. However, little work has been conducted to investigate the distribution of residual stresses in machined surfaces at nano-scale. In this paper, an MD simulation study is performed to study the residual stresses in machined surfaces of single crystal copper by diamond tools. We adopt a fixed cutting speed of 400m/s, vary depth of cut from 0.5nm to 1.5 nm, and change the tool rake angle from −30° to +30°. The results are then compared and discussed in the following aspects. First, it is found that both tool rake angle and depth of cut affect the morphologies of the formed chips, and as well as the cutting force evolution during machining process. Second, the normal residual stress in the tangential direction is more significant and has a clearer pattern than those in other directions for all the simulation cases. As such, the focus of the study is on this particular stress component. Third, with the increase of depth of cut, the maximum tensile residual stress decreases, and the residual stress becomes compressive at a shorter distance into the machined surface. Also, the use of negative rake angle makes the residual stress overall more tensile when closer to surface, and more compressive as the depth into surface further increases. It is actually consistent with traditional metal machining theory. The use of negative tool rake angle requires a larger thrust force, and this in turn overall makes the residual stress more compressive.


2010 ◽  
Vol 150-151 ◽  
pp. 1667-1672 ◽  
Author(s):  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
Mohd Shahir Kasim ◽  
T.K. Soon ◽  
Gusri Akhyar Ibrahim ◽  
...  

The purpose of this study is to investigate the effect of turning parameters on the surface integrity of Inconel 718. The turning parameters studied were cutting speed of 90, 120, 150 m/min, feed rate of 0.15, 0.25, 0.25mm/rev and depth of cut of 0.3, 0.4, 0.5 mm under minimum quantity lubricant (MQL) using coated carbide tool. surface response methodology (RSM) design of experiment using Box-Behnken approach has been employed consisting of various combination of turning parameters Surface roughness, surface topography, microstructure and the micro hardness of the machined surface were studied after the machining process. Feed rate was found to be the most significant parameter affecting the surface roughness. The optimum parameter was obtained with Ra equal to 0.243 µm at cutting speed of 150 m/min, feed rate of 0.25 mm/rev and depth of cut of 0.3mm. A mathematical model for surface roughness was developed using Response Surface Methodology. The effect of turning parameters and factor interactions on surface roughness is presented in 3D graphical form, which helps in selecting the optimum process parameters to achieve the desired surface quality.


2012 ◽  
Vol 271-272 ◽  
pp. 242-246 ◽  
Author(s):  
Rui Tao Peng ◽  
Fang Lu ◽  
Xin Zi Tang ◽  
Yuan Qiang Tan

Aiming to get appropriate residual compressive stress distribution on machined surface just in the machining process, the technique of prestressed cutting is applied for nickel-based superalloy shafts. This article studies theoretically and experimentally the effect of prestress on the residual stress in the machined surface layer. Prestressed turning tests under the conditions of different prestress, cutting speed, depth of cut and feed rate were carried out, residual stresses were determined via an X-ray diffraction technique. Theoretical result demonstrates that higher prestress leads to more prominent residual compressive stress and validated by experiments, meanwhile measured residual stress profiles indicate that lower cutting speed and lower feed rate lead to more remarkable compressive stress state, contrarily depth of cut shows relatively indistinctive effect.


2010 ◽  
Vol 29-32 ◽  
pp. 215-219
Author(s):  
Zhen Yu Zhao ◽  
Ming Jun Liu ◽  
Bai Liu

Pocket corner in the high-speed milling (HSM) often occur under-cut, over-cut, vibration and other phenomena. This not only reduces tool life, seriously affected the work-piece machining accuracy and processing efficiency. In the paper, the impact of cutting speed on cutting forces is studied in the pocket corner based on the high-speed milling experiments. The results show that cutting force increased slightly with the increase in cutting speed, and that cutting force no significant change with the increase in radial depth of cut.


Author(s):  
Kamlesh J. Suthar ◽  
John Patten ◽  
Lei Dong ◽  
Hisham Abdel-Aal

Silicon is machined using a diamond tool and the process is assisted with an IR Laser for the purpose of heating and thermal softening the work piece material. The laser beam passes through the tool and into the work piece, where the material is both thermally heated (by the laser) and mechanically deformed (by the tool). The laser is used to increase the work piece temperature (up to the softening temperature of silicon, about 500–800°C [10]), while the tool deforms and cuts the heated and softened silicon in the ductile regime, without producing cracks. This hybrid laser assisted machining process results in a smooth plastically deformed surface and extends the life of the diamond tool when cutting a hard and abrasive material, e.g. silicon. Scratch tests were done using the micro laser assisted machining method with diamond tools, which demonstrated enhancement in the depth of cut from 60 nm to 120 nm with (a 2x increase in depth of cut, at a constant load) while the cutting speed varied from 0.305 mm/sec to 0.002 mm/s. An analytical and numerical method was used to estimate the temperature rise in the vicinity of the diamond tool due to laser irradiation and absorption by the silicon work piece. It is assumed that the layer of silicon that absorbs the heat from the laser radiation is silicon II. Silicon II is a metallic phase of silicon, commonly referred to as the beta-tin structure, formed by a high pressure phase transformation (HPPT). In this context, the analytical and numerical models are solved using the heat conduction equation for semi-infinite solid over time with a Gaussian laser beam intensity distribution. The temperature rise for different cases (laser intensity, depth of cut, cutting speed, etc.) was modeled using point, and plane heat source method with Gaussian intensity distribution. These results are discussed in detail to estimate the temperature distribution while machining.


Sign in / Sign up

Export Citation Format

Share Document