The flow through a plenum-runner system—a comparison of experiment and computation

Author(s):  
C. T. Shaw ◽  
D. J. Lee ◽  
S. H. Richardson ◽  
S Pierson

This paper describes the comparison between experimental and computational results for the flow in an inlet system that contains a plenum. Here, the main focus is on the details of the computations and the comparison with experimental results for flow in the plenum. Details of the experiment are described elsewhere. By varying mesh density, boundary conditions, discretization schemes and turbulence models, a wide-ranging study of the accuracy of computational techniques for an industrial problem has been made. In particular, levels of mesh refinement for converged numerical solutions have been determined, together with performance levels for the various settings used. In terms of velocity prediction, when the flow is driven by boundary conditions specified at the outlet more accurate results are achieved. This is due to the flow at the inlet being calculated more accurately in these cases. The effects of different discretization schemes and turbulence models on the velocity predictions are small. Pressure predictions are, however, improved by more complex turbulence models such as the renormalization group (RNG) model.

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Rui Lopes ◽  
Luís Eça ◽  
Guilherme Vaz

Abstract A comparison of several Reynolds-averaged Navier–Stokes (RANS) based transition models is presented. Four of the most widespread models are selected: the γ−Reθ, γ, amplification factor transport (AFT), and kT−kL−ω models, representative of different modeling approaches. The calculations are performed on several geometries: a flat plate, the Eppler 387 and NACA 0012 two-dimensional (2D) airfoils at two angles of attack, and the SD7003 wing. Distinct features such as the influence of the inlet boundary conditions, discretization error, and modeling error are discussed. It is found that all models present a strong sensitivity to the turbulence quantities inlet boundary conditions, and with the exception of the AFT model, are severely influenced by the decay of turbulence predicted by the underlying turbulence model. This makes the estimation of modeling errors troublesome because these quantities are rarely reported in experiments. Despite not having specific terms in their formulation to deal with separation-induced transition, both the AFT and kT−kL−ω models manage to predict it for the Eppler 387 foil, although presenting higher numerical uncertainty than the remaining models. However, both models show difficulties in the simulation of flows at Reynolds numbers under 105. The γ−Reθ and γ models are the most robust alternatives in terms of iterative and discretization error. The use of RANS compatible transition models allows for laminar flow and features such as laminar separation bubbles to be reproduced and can lead to greatly improved numerical solutions when compared to simulations performed with standard turbulence models.


Author(s):  
D. Hasen ◽  
S. Elangovan ◽  
M. Sundararaj ◽  
K.M. Parammasivam

In this study, the effects of different turbulence models on the decay characteristics of round jets were studied. The turbulence models considered for the current study is SST, k-ε, k-ω, RNG kε. For the entire turbulence model mesh density and boundary conditions were mentioned same. By comparing the simulated results with the experiments interesting results were obtained. SST predicts the flow better than the other models in this flow regime.


2021 ◽  
Author(s):  
Daniel Ferreira Corrêa Barbosa ◽  
Daniel da Silva Tonon ◽  
Luiz Henrique Lindquist Whitacker ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti

Abstract The aim of this work is an evaluation of different turbulence models applied in Computational Fluid Dynamics (CFD) techniques in the turbomachinery area, in this case, in an axial turbine stage used in turbopump (TP) application. The tip clearance region was considered in this study because it has a high influence in turbomachinery performance. In this region, due to its geometry and the relative movement between the rotor row and casing, there are losses associated with vortices and secondary flow making the flowfield even more turbulent and complex. Moreover, the flow that leaks in the tip region does not participate in the energy transfer between the fluid and rotor blades, degradating the machine efficiency and performance. In this work, the usual flat tip rotor blade geometry was considered. The modeling of turbulent flow based on Reynolds Averaged Navier-Stokes (RANS) equations predicts the variation of turbine operational characteristics that is sufficient for the present turbomachine and flow analysis. Therefore, the appropriate choice of the turbulence model for the study of a given flow is essential to obtain adequate results using numerical approximations. This comparison become important due to the fact that there is no general turbulence model for all engineering applications that has fluid and flow. The turbomachine considered in the present work, is the first stage of the hydraulic axial turbine used in the Low Pressure Oxidizer Turbopump (LPOTP) of the Space Shuttle Main Engine (SSME), considering the 3.0% tip clearance configuration relative to rotor blade height. The turbulence models evaluated in this work were the SST (Shear Stress Transport), the k-ε Standard and the k-ε RNG. The computational domain was discretized in several control volumes based on unstructured mesh. All the simulations were performed using the commercial software developed by ANSYS, CFX v15.0 (ANSYS). All numerical settings and how the boundary conditions were imposed at different surfaces are explained in the work. The boundary conditions settings follow the same rule used in the test facility and needs some attention during the simulations to vary the Blade-Jet-Speed ratio parameter adequately. The results from numerical simulations, were synthesized and compared with the experimental data published by National Aeronautics and Space Administration (NASA), in which the turbine efficiency and its jet velocity parameter are analyzed for each turbulence model result. The work fluid considered in this work was water, the same fluid used in the NASA test facility.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


1996 ◽  
Vol 154 ◽  
pp. 149-153
Author(s):  
S. T. Wu ◽  
A. H. Wang ◽  
W. P. Guo

AbstractWe discuss the self-consistent time-dependent numerical boundary conditions on the basis of theory of characteristics for magnetohydrodynamics (MHD) simulations of solar plasma flows. The importance of using self-consistent boundary conditions is demonstrated by using an example of modeling coronal dynamic structures. This example demonstrates that the self-consistent boundary conditions assure the correctness of the numerical solutions. Otherwise, erroneous numerical solutions will appear.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Yanxia Fu ◽  
Yujiang Fang ◽  
Jiangping Yuan ◽  
Shouqi Yuan ◽  
Giovanni Pace ◽  
...  

The hydraulic performances of a 3-bladed inducer, designed at Alta, Pisa, Italy, are investigated both experimentally and numerically. The 3D numerical model developed in ANSYS CFX to simulate the flow through the inducer and different lengths of its inlet/outlet ducts is illustrated. The influence of the inlet/outlet boundary conditions, of the turbulence models, and of the location of inlet/outlet different pressure taps on the evaluation of the hydraulic performance of the inducer is analyzed. As expected, the predicted hydraulic performance of the inducer is significantly affected by the lengths of the inlet/outlet duct portions included in the computations, as well as by the turbulent flow model and the locations of the inlet/outlet pressure taps. It is slightly affected by the computational boundary conditions and better agreement with the test data obtained when adopting the k-ω turbulence model. From the point of the pressure tap locations, the pressure rise coefficient is much higher when the inlet/outlet static pressure taps were chosen in the same locations used in the experiments.


2018 ◽  
Vol 838 ◽  
pp. 369-378 ◽  
Author(s):  
P. R. Spalart ◽  
A. Garbaruk ◽  
A. Stabnikov

We consider fully developed turbulence in straight ducts of non-circular cross-sectional shape, for instance a square. A global friction velocity $\overline{u}_{\unicode[STIX]{x1D70F}}$ is defined from the streamwise pressure gradient $|\text{d}p/\text{d}x|$ and a single characteristic length $h$, half the hydraulic diameter (shapes with disparate length scales, due to high aspect ratio, are excluded). We reason that as the Reynolds number $Re$ reaches high values, outside the viscous region the streamwise velocity differences and the secondary motion scale with $\overline{u}_{\unicode[STIX]{x1D70F}}$ and the Reynolds stresses with $\overline{u}_{\unicode[STIX]{x1D70F}}^{2}$. This extends the classical defect-law argument, associated with Townsend and many others, and is successful in channel and pipe flows. We then posit matched asymptotic expansions with overlap of the law of the wall and the behaviour we assumed in the core region. The wall may be smooth, or have a Nikuradse roughness $k_{S}$ (such that it is fully rough, with $k_{S}^{+}\gg 1$). The consequences include the familiar logarithmic behaviour of the velocity profile, but also the surprising prediction that the skin friction tends to uniformity all around the duct, except near possible corners, asymptotically as $Re\rightarrow \infty$ or $k_{S}/h\rightarrow 0$. This is confirmed by numerical solutions for a square and two ellipses, using a conventional turbulence model, albeit the trend with Reynolds number is slow. The magnitude of the secondary motion also scales as expected, and the skin-friction coefficient follows the logarithm of the appropriate Reynolds number. This is a validation of the mathematical reasoning, but is by no means independent physical evidence, because the turbulence models embody the same assumptions as the theory. The uniformity of the skin friction appears to be a new and falsifiable deduction from turbulence theory, and a candidate for high-Reynolds-number experiments.


Akustika ◽  
2021 ◽  
Author(s):  
Konstantin Abbakumov ◽  
Anton Vagin ◽  
Alena Vjuginova

The report considers the problem statement, derivation and solution of the dispersion equation for sound propagation in a layered inhomogeneous medium with oriented fracturing, simulated by the presence of boundary conditions in the "linear slip" approximation. Numerical solutions are obtained and analyzed for the frequency range and values of the parameters of contact breaking, which is relevant in the problems of ultrasonic measurements


Author(s):  
İhsan Çelikkaya

Abstract In this study, the numerical solutions of the modified Fornberg–Whitham (mFW) equation, which describes immigration of the solitary wave and peakon waves with discontinuous first derivative at the peak, have been obtained by the collocation finite element method using quintic trigonometric B-spline bases. Although there are solutions of this equation by semi-analytical and analytical methods in the literature, there are very few studies on the solution of the equation by numerical methods. Any linearization technique has not been used while applying the method. The stability analysis of the applied method is examined by the von-Neumann Fourier series method. To show the performance of the method, we have considered three test problems with nonhomogeneous boundary conditions having analytical solutions. The error norms L 2 and L ∞ are calculated to demonstrate the accuracy and efficiency of the presented numerical scheme.


Sign in / Sign up

Export Citation Format

Share Document