scholarly journals Nano-lubricant film formation due to combined elastohydrodynamic and surface force action under isothermal conditions

Author(s):  
M. F. Abd-AlSamieh ◽  
H Rahnejat

This paper presents the results of numerical prediction of the lubricant film thickness and pressure distribution in concentrated counterformal point contact under isothermal conditions. The operating conditions, which include load and speed of entraining motion, promote the formation of ultra-thin films; these are formed under the combined action of elastohydrodynamic lubrication (EHL), the surface contact force of solvation and molecular interactions due to the presence of Van der Waals forces. A numerical solution has been carried out, using the low-relaxation Newton-Raphson iteration technique, applied to the convergence of the hydrodynamic pressure. The paper shows that the effect of surface forces become significant as the elastic film (i.e. the gap) is reduced to a few nanometres. The numerical predictions have been shown to conform well to the numerical work and experimental findings of other research workers.

1981 ◽  
Vol 103 (4) ◽  
pp. 547-557 ◽  
Author(s):  
H. P. Evans ◽  
R. W. Snidle

The paper describes a numerical procedure for solving the point-contact elastohydrodynamic lubrication problem under isothermal conditions at moderate loads. Results are presented showing the shape of the film and variation of hydrodynamic pressure. Analysis of results for a range of operating conditions gives the following approximate formulas for minimum and central film thickness, repsectively: Hm = 1.9 M−0.17 L0.34 and Ho = 1.7 M−0.026 L0.40 where H, M, and L are the Moes and Bosma nondimensional groups. In common with earlier solutions based upon the forward-iterative method the solution breaks down under moderately heavily loaded conditions. Ways of extending the solution to heavier loads using the authors’ inverse solution of Reynolds’ equation under point-contact elastohydrodynamic conditions are discussed.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuchuan Liu ◽  
Dong Zhu

Elastohydrodynamic lubrication (EHL) is a common mode of fluid-film lubrication in which many machine elements operate. Its thermal behavior is an important concern especially for components working under extreme conditions such as high speeds, heavy loads, and surfaces with significant roughness. Previous thermal EHL (TEHL) studies focused only on the cases with smooth surfaces under the full-film lubrication condition. The present study intends to develop a more realistic unified TEHL model for point contact problems that is capable of simulating the entire transition of lubrication status from the full-film and mixed lubrication all the way down to boundary lubrication with real machined roughness. The model consists of the generalized Reynolds equation, elasticity equation, film thickness equation, and those for lubricant rheology in combination with the energy equation for the lubricant film and the surface temperature equations. The solution algorithms based on the improved semi-system approach have demonstrated a good ability to achieve stable solutions with fast convergence under severe operating conditions. Lubricant film thickness variation and temperature rises in the lubricant film and on the surfaces during the entire transition have been investigated. It appears that this model can be used to predict mixed TEHL characteristics in a wide range of operating conditions with or without three-dimensional (3D) surface roughness involved. Therefore, it can be employed as a useful tool in engineering analyses.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
H. Sojoudi ◽  
M. M. Khonsari

This paper presents a simple approach to predict the behavior of friction coefficient in the sliding lubricated point contact. Based on the load-sharing concept, the total applied load is supported by the combination of hydrodynamic film and asperity contact. The asperity contact load is determined in terms of maximum Hertzian pressure in the point contact while the fluid hydrodynamic pressure is calculated through adapting the available numerical solutions of elastohydrodynamic lubrication (EHL) film thickness formula for smooth surfaces. The simulations presented cover the entire lubrication regime including full-film EHL, mixed-lubrication, and boundary-lubrication. The results of friction, when plotted as a function of the sum velocity, result in the familiar Stribeck-type curve. The simulations are verified by comparing the results with published experimental data. A parametric study is conducted to investigate the influence of operating condition on the behavior of friction coefficient. A series of simulations is performed under various operating conditions to explore the behavior of lift-off speed. An equation is proposed to predict the lift-off speed in sliding lubricated point contact, which takes into account the surface roughness.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract We design a pattern of microtexture features to increase hydrodynamic pressure and lubricant film thickness in a hard-on-soft bearing. We use a soft elastohydrodynamic lubrication model to evaluate the effect of microtexture design parameters and bearing operating conditions on the resulting lubricant film thickness and find that the maximum lubricant film thickness occurs with a texture density between 10% and 40% and texture aspect ratio between 1% and 14%, depending on the bearing load and operating conditions. We show that these results are similar to those of hydrodynamic textured bearing problems because the lubricant film thickness is almost independent of the stiffness of the bearing surfaces in full-film lubrication.


2018 ◽  
Vol 70 (4) ◽  
pp. 612-619 ◽  
Author(s):  
Milan Omasta ◽  
Martin Ebner ◽  
Petr Šperka ◽  
Thomas Lohner ◽  
Ivan Krupka ◽  
...  

PurposeThe purpose of this study is to investigate lubricant film-forming capability of oil-impregnated sintered material in highly loaded non-conformal contacts. This self-lubrication mechanism is well described in lightly loaded conformal contacts such as journal bearings; however, only a little has been published about the application to highly loaded contacts under elastohydrodynamic lubrication regime (EHL).Design/methodology/approachThin film colorimetric interferometry is used to describe the effect of different operating conditions on lubricant film formation in line contacts.FindingsUnder fully flooded conditions, the effect of porous structure can be mainly traced back to the different elastic properties. When the contact is lubricated only by oil bleeding from the oil-impregnated sintered material, starvation is likely to occur. It is indicated that lubricant film thickness is mainly governed by oil bleeding capacity. The relationship between oil starvation parameters corresponds well with classic starved EHL theory.Practical implicationsTo show practical, relevant limitations of the considered self-lubrication system, time tests were conducted. The findings indicate that EHL contact with oil-impregnated sintered material may provide about 40 per cent of fully flooded film thickness.Originality/valueFor the first time, the paper presents results on the EHL film-forming capability of oil-impregnated sintered material by measuring the lubricant film thickness directly. The present paper identifies the phenomena involved, which is necessary for the understanding of the behavior of this complex tribological system.


2017 ◽  
Vol 69 (2) ◽  
pp. 215-224
Author(s):  
Mohamed Abd Al-Samieh

Purpose This paper aims to investigate the effect of changing speed of the entraining motion on the formation of ultra-thin lubricating films under different elliptical ratios. The ellipticity parameter (K) varied from 1 (a ball-on-plate configuration) to 6 (a configuration approaching line contact). The influence of the ellipticity parameters, the dimensionless speed and the effects of surface forces on the formation of the minimum film thickness has been demonstrated. The demarcation boundary between region dominated by elastohydrodynamic lubrication (EHL) and that by the surface force action has been demonstrated for different elliptical ratios. Design/methodology/approach The numerical solution has been carried out, using the Newton–Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The film thickness and pressure distribution are obtained by simultaneous solution of the Reynolds’ equation, the elastic deformation (caused by hydrodynamic pressure, surface force of solvation and Van der Waals force) and the load balance equation. The operating conditions, load and speed of entraining motion, promote formation of ultra-thin films that are formed under the combined action of EHL, surface contact force of solvation and molecular interactions due to presence of Van der Waals force. Findings The paper provides insights about the transition between region dominated by EHL and that by the surface force action for changing ellipticity ratio (K) from 1 (a ball-on-plate configuration) to 6 (a configuration approaching line contact). Originality/value This paper fulfils an identified need to study the effect of changing ellipticity ratio on the formation of ultra-thin films that are formed under the combined action of EHL, surface contact force of solvation and molecular interactions due to presence of Van der Waals force.


2021 ◽  
pp. 1-26
Author(s):  
Liangwei Qiu ◽  
Shuangbiao Liu ◽  
Zhijian Wang ◽  
Xiaoyang Chen

Abstract Elastohydrodynamic Lubrication (EHL) in point contacts can be numerically solved with various iteration methods, but so far the flow continuity of such solutions has not been explicitly verified. A series of closed regions with the same inlet side boundary is defined and two treatments to total all flows related to the other boundaries of the closed regions are defined to enable flow continuity verifications. The multigrid method and the traditional single mesh method with different relaxation configurations are utilized to solve different cases to evaluate computation efficiencies. For the multigrid method, the combination of a pointwise solver together with hybrid relaxation factors is identified to perform better than other combinations. The single mesh method has inferior degrees of flow continuity than the multigrid method and needs much smaller error control values of pressure to achieve a decent level of flow continuity. Because flow continuity has a physical meaning, its verifications should be routinely included in any self-validation process for any EHL results. Effects of control errors of pressure, mesh sizes, differential schemes and operating conditions on flow continuities are studied. Then, trends of film thickness with respect to speed are briefly discussed with meshes up to 4097 by 4097.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
M. Mohammadpour ◽  
S. Theodossiades ◽  
H. Rahnejat

Vehicular differential hypoid gears play an important role on the noise, vibration, and harshness (NVH) signature of the drivetrain system. Additionally, the generated friction between their mating teeth flanks under varying load-speed conditions is a source of power loss in a drivetrain while absorbing some of the vibration energy. This paper deals with the coupling between system dynamics and analytical tribology in multiphysics, multiscale analysis. Elastohydrodynamic lubrication (EHL) of elliptical point contact of partially conforming hypoid gear teeth pairs with non-Newtonian thermal shear of a thin lubricant film is considered, including boundary friction as the result of asperity interactions on the contiguous surfaces. Tooth contact analysis (TCA) has been used to obtain the input data required for such an analysis. The dynamic behavior and frictional losses of a differential hypoid gear pair under realistic operating conditions are therefore determined. The detailed analysis shows a strong link between NVH refinement and transmission efficiency, a finding not hitherto reported in literature.


Author(s):  
B Wennehorst ◽  
GWG Poll

Conformal surfaces in parallel sliding lack a macroscopic hydrodynamic pressure and fluid film formation mechanism. However, such a mechanism still exists on a microscopic level due to roughness. It is common to translate roughness into a variation of fluid film thickness which in turn yields a hydrodynamic pressure distribution resulting in a net hydrodynamic lift. Reynolds equation and a suitable cavitation algorithm suffice to describe this effect mathematically. In case one surface consists of a compliant material with low modulus of elasticity, the deformation of asperities due to pressures and shear stresses in the fluid cannot be neglected—in fact, besides cavitation, it significantly contributes to the net hydrodynamic lift. Therefore, a coupling between fluid dynamics and elastic solid body deformations needs to be introduced. An additional complication arises when the hydrodynamic lift and the subsequent separation of the mean lines of the contacting rough surfaces is not enough to prevent asperity contacts completely. This situation is known as mixed lubrication where part of the normal load is transmitted at asperity contacts. These contacts are commonly treated as solid body contacts with a Coulomb-like friction law or more sophisticated solid friction models. However, when considering asperities as contraformal Hertzian contacts, elastic deformation may allow for the existence of thin micro-elastohydrodynamic lubricant films preventing direct solid body contact even at speeds which otherwise would be regarded as deep within the mixed lubrication regime close to boundary lubrication. These films may not be able to prevent wear completely, but may reduce friction significantly in comparison to dry friction. In this paper, the existence of such effects is demonstrated both by simulation and by experiments with elastomeric radial lip seals.


1993 ◽  
Vol 115 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Kyung-Hoon Kim ◽  
Farshid Sadeghi

A numerical study of Newtonian thermal elastohydrodynamic lubrication (EHD) of rolling/sliding point contacts has been conducted. The two-dimensional Reynolds, elasticity and the three-dimensional energy equations were solved simultaneously to obtain the pressure, film thickness and temperature distribution within the lubricant film. The control volume approach was employed to discretize the differential equations and the multi-level multi-grid technique was used to simultaneously solve them. The discretized equations, as well as the nonorthogonal coordinate transformation used for the solution of the energy equation, are described. The pressure, film thickness and the temperature distributions, within the lubricant film at different loads, slip conditions and ellipticity parameters are presented.


Sign in / Sign up

Export Citation Format

Share Document