Design, analysis, and performance verification of a water jet thruster for amphibious jumping robot

Author(s):  
Jixue Mo ◽  
Zhihuai Miao ◽  
Bing Li ◽  
Yunlu Zhang ◽  
Zhendong Song

In nature, certain aquatic animals and seabirds are capable of leaping from water surface and overcoming aquatic obstacles with ease. Inspired by that, researchers have developed various underwater robots, which can perform the aquatic jumping motion. Although there are several ways to achieve it, the water jet propulsion is the most appropriate approach for the amphibious jumping robot, which is under development. In this paper, a high-performance water jet thruster powered by liquid nitrogen is proposed to be the potential actuator for the amphibious jumping robot. The theoretical jumping model is built to optimize the initial volume fraction of water inside thruster and analyze its parameters' variation during water jet. Then the computational fluid dynamics simulations by ANSYS FLUENT software are carried out to analyze the self-pressurization process of liquid nitrogen as well as the water jet process. Finally, the proof-of-concept outdoor experiments present that the 3.7 kg thruster's maximum aquatic and terrestrial jumping heights are 25.1 m and 24.4 m, respectively. A simple heat transfer analysis between water and liquid nitrogen is also conducted, and the order of magnitude estimation of heat transfer coefficient is given to be 265W/ (m2·K) based on the experimental reaction time.

2018 ◽  
Vol 39 (1) ◽  
pp. 68-75
Author(s):  
S.P. Aadhy ◽  
T. Hema Sinega ◽  
C. Karthikeyan ◽  
S. Akshay ◽  
Mohan Kumar Pitchan ◽  
...  

Abstract This work investigates the possibility of using polyetherimide (PEI) as an energy saving alternative to glass, polymethylmethacrylate (PMMA) and polycarbonate (PC) by carrying out heat transfer analysis and suggests vaporized solvent bonding as a viable bonding technique for the fabrication of PEI. By heat transfer analysis using building energy simulation, it is observed that less energy is expended for space-conditioning of a building with windows made of PEI when compared to glass, PMMA and PC. The compression moulding technique is used to mould PEI and fabrication is done using a solvent mixture of dimethyl sulfoxide and tetrahydrofuran in 1:1 ratio. The optical properties of the bonded specimen are studied using UV-visible spectrophotometry and it is found that PEI does not allow UV wavelength radiation to pass through while transmitting visible wavelengths. The mechanical strength of the bond is tested using lap shear tensile strength test and the type of failure is observed to be cohesive from the structure. This is indicative of the fact that using this particular solvent to bond PEI results in the maximum possible strength.


2021 ◽  
Vol 10 (4) ◽  
pp. 518-537
Author(s):  
R. Nasrin ◽  
S. A. Sweety ◽  
I. Zahan

Temperature dissipation in a proficient mode has turned into a crucial challenge in industrial sectors because of worldwide energy crisis. In heat transfer analysis, shell and tube thermal exchangers is one of the mostly used strategies to control competent heat transfer in industrial progression applications. In this research, a numerical analysis of turbulent flow has been conceded in a shell and tube thermal exchanger using Kays-Crawford model to investigate the thermal performance of pure water and different concentrated water-MWCNT nanofluid. By means of finite element method the Reynold-Averaged Navier-Stokes (RANS) and heat transport equations along with suitable edge conditions have been worked out numerically. The implications of velocity, solid concentration, and temperature of water-MWCNT nanofluid on the fluid flow formation and heat transfer scheme have been inspected thoroughly. The numerical results indicate that the variation of nanoparticles solid volume fraction, inflow fluid velocity and inlet temperature mannerism considerably revolutionize in the flow and thermal completions. It is perceived that using 3% concentrated water-MWCNT nanofluid, higher rate of heat transfer 12.24% is achieved compared that of water and therefore to enhance the efficiency of this heat exchanger. Furthermore, a new correlation has been developed among obtained values of thermal diffusion rate, Reynolds number and volume concentration of nanoparticle and found very good correlation coefficient among the values.


2020 ◽  
Vol 307 ◽  
pp. 01010 ◽  
Author(s):  
Ahlem Boudiaf ◽  
Fetta Danane ◽  
Youb Khaled Benkahla ◽  
Walid Berabou ◽  
Mahdi Benzema ◽  
...  

This paper presents the numerical predictions of hydrodynamic and thermal characteristics of nanofluid flow through backward facing step. The governing equations are solved through the finite volume method, as described by Patankar, by taking into account the associated boundary conditions. Empirical relations were used to give the effective dynamic viscosity and the thermal conductivity of the nanofluid. Effects of different key parameters such as Reynolds number, nanoparticle solid volume fraction and nanoparticle solid diameter on the heat transfer and fluid flow are investigated. The results are discussed in terms of the average Nusselt number and streamlines.


2015 ◽  
Vol 45 ◽  
pp. 152-160 ◽  
Author(s):  
Baptiste Pignon ◽  
Xavier Tardif ◽  
Nicolas Lefèvre ◽  
Vincent Sobotka ◽  
Nicolas Boyard ◽  
...  

Author(s):  
Kuo-San Ho ◽  
Jong Liu ◽  
Christopher Urwiller ◽  
S. Murthy Konan ◽  
Bruno Aguilar

In recent years, conjugate heat transfer (CHT) computational fluid dynamics (CFD) simulation in turbomachinery played an important role in predicting metal temperature. Most of research papers of CHT CFD simulation were emphasized on the mixing plane method. In this paper the ANSYS CFX 14.0 CHT simulation using the frozen rotor approach is employed to predict the blade temperatures. The frozen rotor included five time instances in which the stator-rotor wake influence could be captured. In this study, the temperature predictions using the frozen rotor approach were compared to the mixing plane predictions and Silicon Carbide (SiC) chip measurements on three different radial spans. The frozen rotor results predicted the minimum and maximum temperatures that bounded the SiC chip data. Compared to the mixing plane predictions, the frozen rotor approach results were similar within 8 K at the mid-span. However, the frozen rotor approach provided more insight information and detailed guidance for model calibration. Finally several future works were suggested to continue striving for high performance gas turbines.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Waqar A. Khan ◽  
Richard Culham ◽  
Rizwan Ul Haq

The MHD flow and heat transfer from water functionalized CNTs over a static/moving wedge are studied numerically. Thermal conductivity and viscosity of both single and multiple wall carbon nanotubes (CNTs) within a base fluid (water) of similar volume are investigated to determine the impact of these properties on thermofluid performance. The governing partial differential equations are converted into nonlinear, ordinary, and coupled differential equations and are solved using an implicit finite difference method with quasi-linearization techniques. The effects of volume fraction of CNTs and magnetic and wedge parameters are investigated and presented graphically. The numerical results are compared with the published data and are found to be in good agreement. It is shown that the magnetic field reduces boundary layer thickness and increases skin friction and Nusselt numbers. Due to higher density and thermal conductivity, SWCNTs offer higher skin friction and Nusselt numbers.


2021 ◽  
pp. 266-266
Author(s):  
Ceren Hasgül ◽  
Gülşah Çakmak

In this study, the effect of the design on the heat transfer is numerically investigated by using the "wavy inner tube" in a double-pipe heat exchanger. A wavy inner tube was used in the design to give a turbulent effect to the fluid along the inner tube of a double tube heat exchanger. In numerical study, ANSYS 12.0 Fluent code program was used, and the basic protection equations were solved for steady-state, three-dimensional and turbulent flow conditions. The study was examined at Reynolds numbers ranging from 2700 to 5300. The obtained results were compared with the experimental data performed under the same conditions. As a result of this comparison, after it was seen that the results obtained from the numerical analysis and the experimental results were compatible with each other, the wave number of the inner tube was increased and analyzed with the ANSYS fluent code program. When the data obtained as a result of the analyzes were evaluated, it was seen that the highest heat transfer was obtained from the 16 wave tube heat exchanger, which has the highest number of waves and under counter flow conditions. The increase in heat transfer increased by 270% compared to the straight tube.


Author(s):  
Haden Hinkle ◽  
Deify Law

Two-phase (non-boiling) flows have been shown to increase heat transfer in channel flows as compared with single-phase flows. The present work explores the effects of gas phase distribution such as volume fraction and bubble size on the heat transfer in upward vertical channel flows. A two-dimensional (2D) channel flow of 10 cm wide by 100 cm high is studied numerically. Numerical simulations are performed using the commercial computational fluid dynamics (CFD) code ANSYS FLUENT. The bubble size is characterized by the Eötvös number. The volume fraction and the Eötvö number are varied parametrically to investigate their effects on Nusselt number of the two-phase flows. All simulations are compared with a single-phase flow condition.


Sign in / Sign up

Export Citation Format

Share Document