Nonlinear dynamic characteristics analysis and chaos control of a gear transmission system in a shearer under temperature effects

Author(s):  
Jiajun Chen ◽  
Wei Li ◽  
Gaifang Xin ◽  
Lianchao Sheng ◽  
Song Jiang ◽  
...  

Due to changes in the working temperature in a shearer transmission system, it is easy to cause the transmission gear to work abnormally. In this paper, the first gear pair in a cutting transmission system of a permanent magnet semi-direct drive shearer was taken as the research object. The coupling effect of time-varying meshing stiffness, meshing damping, bearing clearance and gear backlash under thermal deformation were fully considered. Then, a three degree of freedom nonlinear dynamic model of the gear pair was established, and a dimensionless analysis was performed. Finally, the Runge-Kutta method was used in the numerical calculations. The motion characteristics of the system were analysed through the gear’s bifurcation diagram of the temperature at different frequencies and the bifurcation diagram of the frequency at different temperatures. The meshing state was analysed at different frequencies and temperatures. For the chaotic motion generated in the system, a periodic resonance excitation was applied to control unstable motion. This study has revealed various specific effects of the temperature on the dynamic characteristics of the system. In addition, the periodic excitation method can effectively control the nonlinear motion in the system and realise the control of the chaos under the temperature effect.

2012 ◽  
Vol 215-216 ◽  
pp. 1067-1070
Author(s):  
Kang Huang ◽  
Jue Li ◽  
Xin Jin ◽  
Qi Chen

For the study of nonlinear dynamic characteristics of a pair of gears in an external torque under gear meshing error excitation, we will establish two degrees of freedom nonlinear torsional vibration model. The use of Matlab / Simulink for numerical simulation solves the nonlinear dynamic model of the gear gap. Study the dynamic characteristics of the system in a certain domain of parameters on external incentive conditions, as well as external motivation of gear transmission system dynamic characteristics influence. The results have important practical value for future engineering practice on gear transmission system's dynamic design, and have important theoretical significance for complex gear transmission system dynamics study.


2020 ◽  
Vol 15 (8) ◽  
Author(s):  
Zhibo Geng ◽  
Ke Xiao ◽  
Jiaxu Wang ◽  
Junyang Li

Abstract Nonlinear vibration, a main factor affecting the dynamic stability, widely exists in the transmission system. In addition, geometric eccentricities caused by the manufacturing errors are inevitable in the gear transmission system, which may lead to the excessive nonlinear vibration. In order to suppress the nonlinear vibration under the excitation of the geometric eccentricities, a rigid–flexible gear pair consisting of the ring gear, the composite material, and the hub is proposed in this study. A dynamic model with nine degrees-of-freedom which considers geometric eccentricities is proposed to analyze the nonlinear dynamic characteristics of the rigid–flexible gear pair. Furthermore, the dynamic characteristics of the rigid–flexible gear pair and the rigid gear pair are compared within a wide range of operating conditions. The comparative analysis demonstrates that the rigid–flexible gear pair has better vibration suppression effect on the system.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lun Liu ◽  
Fenghui Wang ◽  
Shupeng Sun ◽  
Weiming Feng ◽  
Chao Guo

In this paper, a coupling nonlinear dynamic model of the drum and subgrade is established for the vibratory roller. The dynamic characteristics of the rigid drum of the vibratory roller in the process of vibratory compaction are comprehensively investigated by time history, phase diagram, frequency spectrum, Poincare map, and bifurcation diagram. During the compaction process, the stiffness of the subgrade increases and the motion of the rigid drum of the vibratory roller changes from a single period to multiple periods and finally enters chaos by the way of period doubling. Moreover, the roller parameters also significantly affect the dynamic characteristics of the rigid drum and the compaction effect of the subgrade. Based on detailed numerical results, a parameter adjustment strategy about the roller frequency and nominal amplitude is proposed, which can avoid the “bouncing” of the drum during compaction and improve the compaction efficiency.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4056
Author(s):  
Kai Zhang ◽  
Xinkuo Jiang ◽  
Shiyang Li ◽  
Bin Huang ◽  
Shuai Yang ◽  
...  

Annular seals of turbomachinery usually suffer from various degrees of eccentricities and disturbances due to the rotor–stator misalignment and radial loads, while the discussion of annular seal under both large static eccentricities and dynamic disturbances is relatively limited. In this paper, the applicability of linear assumption and reliability of nonlinear dynamic model for eccentric annular seals under large eccentricities and disturbances is discussed based on the investigation of seals with various rotor motions through computational fluid dynamics (CFD). After the validation of transient CFD methods by comparison with experimental and bulk theory results, the dynamic behaviors of annular seal are analyzed by adopting both direct transient simulations and the nonlinear Muszynska model. The results show that the nonlinear dynamic model based on rotor circular whirls around seal center can predict the fluid excitations of different types of rotor motions well under small static eccentricities, while it is limited severely with large static eccentricities, which indicates that the dynamic characteristics of annular seal under large eccentricities are related with the rotor’s motion ways. The paper provides a reference for studies of rotor–seal system with complex rotor motions considering radial loads or running across the resonance region.


Author(s):  
Z. Liu ◽  
X. Han ◽  
Y. F. Liu

A nonlinear dynamic model of a large flow solenoid is presented with the multi-physics dynamic simulation software called SimulationX. Validation is performed by comparing the experimental results with the simulated ones. The dynamic characteristics of the large flow solenoid valve are analyzed. Different structural parameters are modified in this research and the diameter of the orifice is proved to be one of the most important parameters which influences the pressure response most.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhibo Geng ◽  
Ke Xiao ◽  
Junyang Li ◽  
Jiaxu Wang

Abstract In this study, a nonlinear dynamic model of a spur gear transmission system with non-uniform wear is proposed to analyze the interaction between surface wear and nonlinear dynamic characteristics. A quasi-static non-uniform wear model is presented, with consideration of the effects of operating time on mesh stiffness and gear backlash. Furthermore, a nonlinear dynamic model with six degrees-of-freedom is established considering surface friction, time-varying gear backlash, time-varying mesh stiffness, and eccentricity, and the Runge–Kutta method applied to solve this model. The bifurcation and chaos in the proposed dynamic model with the change of the operating time and the excitation frequency are investigated by bifurcation and spectrum waterfall diagrams to analyze the bifurcation characteristics and the dimensionless mesh force. It is found that surface wear is generated with a change in operating time and affects the nonlinear dynamic characteristics of the spur gear system. This study provides a better understanding of nonlinear dynamic characteristics of gear transmission systems operating under actual conditions.


Author(s):  
Guan Changbin ◽  
Jiao Zongxia

Stack-type piezoelectric actuators, which usually consist of several ceramic layers connected in series, are widely used in piezoelectric direct-drive servo valves (PDDSV). However, poor pulling force capacity of this kind of actuators affects the performances of the direct-drive servo valves. This article presents a new type of PDDSV, whose spool-driving mechanism is composed of a set of independent parts that are not fixed together but are in contact with each other. This multi-body contacting spool-driving mechanism provides bidirectional movement of the spool by a preloaded stack-type piezoelectric actuator and a driving disc spring. This prevents the stack-type piezoelectric actuator from bearing the pulling force due to the inertia and friction of the spool. Design of the proposed servo valve is illustrated in detail and its characteristics are also predicted. Based on a nonlinear dynamic model of the multi-body contacting spool-driving mechanism, a comprehensive dynamic simulation model of the proposed PDDSV is established. Static and dynamic characteristics of the proposed PDDSV have been studied experimentally and good agreements between experimental and simulation results are observed. The dynamic performances of the proposed PDDSV are compared with the existing piezoelectric servo valves, which demonstrate that the proposed PDDSV has satisfactory dynamic characteristics for high-frequency applications.


Author(s):  
А. Денисенко ◽  
A. Denisenko

On the basis of a nonlinear dynamic model of a vibration-proof system at power excitation there are formed amplitude-frequency characteristics of a lathe installed on rubber-metal anti-vibration supports, and an area of efficient vibration isolation is defined. An elastic characteristic of the model is presented as an approximating dependence obtained on the basis of the experimental dependence of support elastic deformation changes upon loading.


2021 ◽  
Vol 1820 (1) ◽  
pp. 012038
Author(s):  
Chen Zhang ◽  
Xuew Liu ◽  
Xingl Shi ◽  
Xiaom Ling

Sign in / Sign up

Export Citation Format

Share Document