Unsteady flow characteristics of energy conversion in impeller of centrifugal pump as turbine

Author(s):  
Senchun Miao ◽  
Hongbiao Zhang ◽  
Jiawei Zhang ◽  
Xiaohui Wang ◽  
Fengxia Shi

To study unsteady flow characteristics of energy conversion in impeller of centrifugal pump as turbine (PAT), the overall and sub-section methods are used to calculate the unsteady flow of the PAT under six working conditions. Through numerical calculations, the net input power of the impeller, the time domain change law of the fluid's work on the impeller, the time domain change law of power loss in the impeller, and the time domain change law of energy conversion in different regions of the impeller are analyzed. Results show that: the dynamic and static interference between the impeller blades and the tongue caused the fluctuation of energy conversion; with the increase of area between the head of the impeller blade and the opposite tongue, the power loss in the impeller decreases. And when the blade head completely deviates from the position of the tongue about 10°, the power loss in the impeller is minimized. The power output of the PAT at different flow rates is related to its internal flow conditions and the geometric structure of each region of the impeller. The above research results can provide guidance on how to operate the PAT impeller stably and efficiently.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yi-bin Li ◽  
Chang-hong He ◽  
Jian-zhong Li

To investigate the unsteady flow characteristics and their influence mechanism in the volute of centrifugal pump, the Reynolds time-averaged N-S equation, RNG k-ε turbulence model, and structured grid technique are used to numerically analyze the transient flow-field characteristics inside the centrifugal pump volute. Based on the quantified parameters of flow field in the volute of centrifugal pump, the velocity mode contours and oscillation characteristics of the mid-span section of the volute of centrifugal pump are obtained by dynamic mode decomposition (DMD) for the nominal and low flow-rate condition. The research shows that the first-order average flow mode extracted by DMD is the dominant flow structure in the flow field of the volute. The second-order and third-order modes are the most important oscillation modes causing unsteady flow in the volute, and the characteristic frequency of the two modes is consistent with the blade passing frequency and the 2x blade passing frequency obtained by the fast Fourier transform (FFT). By reconstructing the internal flow field of the volute with the blade passing frequency for the nominal flow-rate condition, the periodic variation of the unsteady flow structure in the volute under this frequency is visually reproduced, which provides some ideas for the study of the unsteady structure in the internal flow field of centrifugal pumps.


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 122 ◽  
Author(s):  
Peifeng Lin ◽  
Yongzheng Li ◽  
Wenbin Xu ◽  
Hui Chen ◽  
Zuchao Zhu

In order to make the centrifugal pump run efficiently and stably under various working conditions, the influences of the incoming vortex flow in the inlet pipe on the main flow in the impeller is studied numerically, based on the k − ω SST turbulence model. Some guide vanes with different offset angle were added to change the statistical characteristic of the internal flow in the inlet pipe of the centrifugal pump. Both contour distributions of internal flow and statistical results of external performance are obtained and analyzed. The results show that the existence of vanes can divide the large vortex because of the reversed flow from the rotating impeller at low flow rate conditions into small vortices, which are easier to dissipate, make the velocity and pressure distribution more uniform, improve the stability of the flow in the impeller, reduce the hydraulic loss, and improve the hydraulic performance of the pump. The pump with vanes of offset angle 25° has a small pressure pulsation amplitude at each monitoring point. Comparing with the performance of the original pump, the head increased by around 2% and efficiency increased by around 2.5% of the pump with vanes of offset angle 25°.


2015 ◽  
Vol 32 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Yu-Liang Zhang ◽  
Zu-Chao Zhu

AbstractTo study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time


2017 ◽  
Vol 20 (3) ◽  
pp. 26-35
Author(s):  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim ◽  
Young-Seok Choi

2012 ◽  
Vol 229-231 ◽  
pp. 2454-2458
Author(s):  
Jian Jun Gan ◽  
Jie Gang Mou ◽  
Shui Hua Zheng ◽  
Bo Zhu

Based on CFD simulations and experimental research, this paper studied the mach of impeller outlet and diffuser inlet in stamping and welding centrifugal pump. The influence of area ratio Y of impeller outlet to diffuser inlet on pump internal flow characteristics and performance was studied. Five different area ratio pump models were analyzed. The results indicate that as the area ratio Y= F3/F2 increase, the velocity of fluid in diffuser inlet decreases continuously, the average static pressure of diffuser outlet increases, and the head and efficiency of the pump are risen. When the area ratio increases from Y=1.48 to Y=3.49, the head increases about 3.0% and the efficiency about 2.0%.


2014 ◽  
Vol 8 (1) ◽  
pp. 613-618
Author(s):  
Su-Lu Zheng ◽  
Xiang-Ping Wang ◽  
Rui-Hang Zheng ◽  
Ai-Ping Xia ◽  
Yi-Nian Wang ◽  
...  

The double-channel centrifugal pumps are widely used to transport the two-phase flow including big solid particles in industry and agriculture. However, the related design theory and the design method are immature by far. In practice, the revised design method based on the pure water medium is still the main method for the solid-liquid twophase double-channel pump. Therefore, it is very necessary to deeply study the flow characteristics on the condition of the pure water medium. In this paper, in order to study the flow characteristics inside a prototype double-channel centrifugal pump in the case that the delivered medium is the pure water, the SIMPLE algorithm, RNG κ-ε turbulence model, and frozen rotor method are employed to calculate the incompressible, viscous, three-dimensional internal flow. The calculation results display the variation characteristics of the internal flow field and the external performance. The results show that the predicted pump head drops with the increasing flow rate, which manifest that the pump model is of good operation stability at the whole range of working. At the design point, a strong and large vortex remain appears at the middle section of the double-channel impeller. The computational fluids dynamic technology is competent to assess the internal viscous flow inside a double-channel centrifugal pump.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Hui Quan ◽  
Jing Cheng ◽  
Ying Guo ◽  
Lei Kang ◽  
Guoyi Peng

Abstract Installing an inducer upstream of the main impeller is an effective approach for improving the performances of a centrifugal pump. In order to study the influence of inducer on the internal flow characteristics and evolution of vortex pump, the numerical simulation and experimental test of the 150WX-200-20 vortex pump have been done by the principle of computational fluid dynamics, to acquire performance and internal flow structure change of the vortex pump with inducer and without inducer. Based on these, the energy conversion of vortex pump is combined with the changes of the through-flow and circulating-flow of the internal flow structure. Through analyzing the influence of inducer on it, the energy conversion characteristic of vortex pump is revealed. The results show that adding the inducer can guarantee the power capacity of the vortex pump and improve the anticavitation performance, so as to improve the pump head and flows. Equipped with suitable for transporting solid liquid two phase flow of the screw centrifugal inducer, it can effectively weaken the existence of circulating-flow and significantly improve the flow situation in the impeller field. Adding inducer can weaken axial force of vortex pump and enhance stability of pump. And under the condition of no clogging, the conclusions are of great significance for improving the power capacity and fluid energy conversion of the vortex pump. In addition, it is a good method to weaken the axial force of the pump and enhance the stability of the pump system by adding the inducer.


Author(s):  
Taiki Takamine ◽  
Satoshi Watanabe

Abstract Because of the high energy density of multi-stage centrifugal pump, it is really important to ensure the reliability of the pumps thus the stability of rotor system in the wide flow rate range. Rotating stall is a well-known unsteady flow phenomenon in which one or several stall cell structures propagate circumferentially in impeller and/or diffuser. Rotating stall alters the peripheral pressure distribution of rotors, and therefore it is often regarded as one of the primary trigger of unstable fluid force acting on the rotor system. One possible factor which could affect the rotating stall is a geometrical relationship between the rotor and the stator. In the present study, unsteady RANS simulations of internal flow in a centrifugal pump are carried out. The pump is the partial model of the final stage of the three-stage centrifugal pump used in our previous study. In order to investigate the effect of the gap between impeller trailing edge and diffuser leading edge on the unsteady flow of the pump, three cases of impeller-diffuser gap is simulated; one is the smaller gap case with original impeller. The other cases are two larger gap cases with only cutting the impeller blades and with cutting the both impeller blades and impeller shroud walls. For all gap cases, the computations are conducted for the nominal flow rate and the low flor rate with 10% of the nominal flow rate. As a result, the rotating stall is observed only in the larger gap case with the cut shroud walls, indicating that the key phenomenon for the stable formation of the stall cell is not only the weakened rotor-stator interaction, but also the other phenomenon attributed to the enlarged gap between the impeller shroud walls and the diffuser walls. In the shroud cut case, a part of the main flow blocked by the stalled region and the secondary flow on the diffuser walls tend to flow into the side gaps more easily than other cases. They might be the important phenomenon associated with the diffuser rotating stall in the enlarged wall gap condition.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 691 ◽  
Author(s):  
Lun ◽  
Ye ◽  
Lin ◽  
Ying ◽  
Wei

The unsteady flow characteristics of a forward multi-wing centrifugal fan under a low flow rate are studied using the computational fluid dynamics (CFD) method. This paper emphasizes the eddy current distribution in terms of the Q criterion method, as well as pressure fluctuation, frequency spectrum, and kinetic energy spectrum analysis of internal monitoring points in a forward multi-wing centrifugal fan. The numerical results show that abnormal eddies mainly appear at the volute outlet and near the volute tongue, boundary layer separation occurs near the suction surface of the blade, and shedding eddies appear at the trailing edge of the blade with the time evolution. The unsteady flow characteristics of a forward multi-wing centrifugal fan at a small flow rate provide significant physical insight into understanding the internal flow law.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 872 ◽  
Author(s):  
Biao Zhou ◽  
Ximing He ◽  
Hui Yang ◽  
Zuchao Zhu ◽  
Yikun Wei ◽  
...  

The steady and unsteady flow characteristics of internal flow in a backward centrifugal fan of double inlet at low flow-rate condition are investigated by computational fluid dynamics in this paper. The investigation aims to reveal insights into generation mechanisms and our physical understanding of the rotating stall and surge. The numerical results mainly demonstrate that, with decreasing flow rate, a large number of vortex flows almost increasingly occupy the internal flow of the impeller. The reverse flow and separation vortices increasingly appear near the outlet of volute, and the internal flow of the impeller is completely blocked by the separated vortex flow at low flow-rate conditions. Results indicate that, due to a synchronization of the impeller rotation and separation vortex, these separated vortices act intensely on the pressure surface of the blade with time evolution, and the interaction between the separated vortices and surface of blade increasingly yields small-scale eddies. It is further found that the amplitude of pressure and velocity fluctuations gradually increase with the decrease of flow rate in a certain range. The unsteady characteristics acting on the volute tongue gradually increase in a range of Qd to 0.3 Qd (Qd is the design volume flow rate) with the decrease of flow rate, and the unsteady characteristics acting on the volute tongue are weakened at the working condition of 0.15 Qd. These insights clearly explain the unsteady nature of the rotating stall and surge phenomenon in the double inlet backward centrifugal fan.


Sign in / Sign up

Export Citation Format

Share Document