Mechanical strength of highly preloaded bolts affected by the ovalization of an aircraft wheel

Author(s):  
Ahmed Haddar ◽  
Alain Daidie ◽  
Emmanuel Rodriguez ◽  
Louis Augustins

This work presented in this paper concerns the modeling of the tensile and bending behavior of bolts in an airplane wheel. The design of a very rigid airplane tire means that the airplane wheel must be separated into two parts. In order not to have a separation between the two parts, several bolts with high preload are used. The main objective of this work is to predict the mechanical behavior of this assembly in a preliminary design phase with geometrical and global mechanical data. To achieve this objective, a simplified semi-numerical 1D model is developed. The complex geometry of the wheels is modeled by axisymmetric elements, while beam elements define the geometries and mechanical behavior of the bolts. The model is improved in non-axisymmetric cases to include the ring effect due to the wheel ovalization. Different cases are simulated (inflation and rolling). For each load case, the most stressed fastener is examined. Then, a comparison between its static and fatigue stress results and those of the 3D finite element reference model considered is analyzed for the validation of the developed tool. The semi-numerical model is used in the preliminary design phase and permits the geometric and mechanical properties of the aircraft wheel and fasteners to be defined so as to find the best assembly configuration that prevents separation.

2018 ◽  
Vol 1 (1) ◽  
pp. 1072-1079
Author(s):  
Şenol Gülgönül ◽  
Nedim Sözbir

Propellant budget of the geostationary satellites has to be calculated during preliminary design phase to properly size propellant tanks, mass and dimensions of the satellite. Lifetime of the satellite depends on the propellant budget. A guideline for calculation of propellant budget of geostationary satellites is presented. Proposed method has enough accuracy for initial design phase of the satellite.


2019 ◽  
Vol 887 ◽  
pp. 353-360 ◽  
Author(s):  
Sören Eikemeier ◽  
Ardeshir Mahdavi ◽  
Robert Wimmer

To reduce the energy and resource consumption in the building sector this study is focusing on a design optimisation of life cycle oriented buildings. In order to optimise the performance of the buildings and in consequence also to achieve improved results for the mandatory Austrian energy certificate a simulation-based rapid design approach is used for the early stage design phase of the buildings, in particular for the architectural design of the buildings.Methods like the Window to Wall Ratio, at the very beginning of the design process, a parametric simulation with EnergyPlus or a more detailed optimisation approach with GenOpt are integrated in this study applied to example buildings. The results are showing that the method can be used in a circular approach for improving the heating demand of the Austrian energy certificate for this case study by more than 25 % compared to the preliminary design


2019 ◽  
Vol 299 ◽  
pp. 03005
Author(s):  
Mădălina Ioana Blaj ◽  
Gheorghe Oancea

In the recent years, the industry tends to an accelerated evolution in order to maintain the competitiveness on the profile market. As a response to this challenge, engineers and researchers have started to combine multidisciplinary knowledge with solutions provided by programming software so as to obtain immediate and reliable results on each step of a product development. The main advantage is highlighted especially for the optimization phases, when the using of the parametric tools is less time-consuming and the majority of issues of the developed product are solved from the first version of the project. This paper aims to present a case study of a parametric design and meshing in MSC Patran environment, using a programming solution in Visual Basic, of a part with a complex geometry from aerospaceindustry and also to accentuate the minimized risks from the design phase to manufacturing, with a review of the advantages and disadvantages.


Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


Author(s):  
Yifan Gao ◽  
Shan Jin ◽  
Peng Cheng ◽  
Peihua Han ◽  
Yong Bai

Abstract Fiberglass reinforced flexible pipe (FRFP) is a kind of composite thermoplastic pipe, which has many advantages compared to boned flexible pipes. This paper describes an analysis of the mechanical behavior of FRFP under bending. The bending behavior of FRFP was investigated by experimental, analytical and numerical methods. Firstly, this paper presents experimental studies of three 10-layer FRFP in a typical four-point bending test. Curvature-bending moment relations were recorded during the test. Then, based on the nonlinear ring theory and the principle of virtual work, a simplified method was proposed to study the mechanical behavior of FRFP. In addition, a finite element model (FEM) including reinforced layers and high density polyethylene (HDPE) layers was established to simulate the HDPE layers and reinforced layers, respectively. The result of Curvature-bending moment relations obtained from three methods agree well with each other, which proves that the simplified analytical model and FEM are accurate and reliable. The conclusions of this paper could be useful to manufacturing engineers.


Author(s):  
Fabian Donus ◽  
Stefan Bretschneider ◽  
Reinhold Schaber ◽  
Stephan Staudacher

The development of every new aero-engine follows a specific process; a sequence of steps or activities which an enterprise employs to conceive, design and commercialize a product. Typically, it begins with the planning phase, where the technology developments and the market objectives are assessed; the output of the planning phase is the input to the conceptual design phase where the needs of the target market are then identified, and alternative product concepts are generated and evaluated, and one or more concepts are subsequently selected for further development based on the evaluation. For aero-engines, the main goal of this phase is therefore to find the optimum engine cycle for a specific set of boundary conditions. This is typically done by conducting parameter studies where every calculation point within the study characterizes one specific engine design. Initially these engines are represented as pure performance cycles. Subsequently, other disciplines, such as Aerodynamics, Mechanics, Weight, Cost and Noise are accounted for to reflect interdisciplinary dependencies. As there is only very little information known about the future engine at this early phase of development, the physical design algorithms used within the various discipline calculations must, by default, be of a simple nature. However, considering the influences among all disciplines, the prediction of the concept characteristics translates into a very challenging and time intensive exercise for the pre-designer. This is contradictory to the fact that there are time constraints within the conceptual design phase to provide the results. Since the early 1970’s, wide scale efforts have been made to develop tools which address the multidisciplinary design of aero-engines within this phase. These tools aim to automatically account for these interdisciplinary dependencies and to decrease the time used to provide the results. Interfaces which control the input and output between the various subprograms and automated checks of the calculation results decrease the possibility of user errors. However, the demands on the users of such tools are expected to even increase, as such systems can give the impression that the calculations are inherently performed correctly. The presented paper introduces MTU’s preliminary design system Modular Performance and Engine Design System (MOPEDS). The results of simple calculation examples conducted using MOPEDS show the influences of the various disciplines on the overall engine system and are used to explain the architecture of such complex design systems.


2014 ◽  
Vol 223 ◽  
pp. 62-69 ◽  
Author(s):  
Stanisław Pysz ◽  
Marcin Małysza ◽  
Jarosław Pieklo

The article discusses some of the issues associated with the use of topology optimization in shaping of the strength of castings. This kind of optimization is performed in the preliminary design phase, when the shape of the constructed part is not yet defined. The limitations that apply to the designing process concern the dimensions, boundary conditions, loads, forces, and cooperation with other structural elements. Topology optimization determines the arrangement of the material in space, so that under the conditions of loads, exploitation, and the design assumptions, the construction will have smallest possible weight. The article presents a few methods of optimization and provides simple examples. The computer calculations were carried out based on, the Finite Element Method (the Abaqus software), and the authors’ subroutines optimization algorithm that uses the results obtained in FEM. The example of the method to optimize the shape of mine shaft tubing is presented. The verification of the casting technology was conducted in MAGMASoft, taking into account the influence of the topology optimization on the production possibilities.


2010 ◽  
Vol 168-170 ◽  
pp. 2049-2054
Author(s):  
Li Wan ◽  
Wei Qing Liu ◽  
Hai Fang

Paulownia wood was drilled with some glass fibers fulfilled in the holes, which could be the core of the sandwich structures. In the manufacture processing, the fibers and resins left in the holes formed composite columns and merged with the facesheets. These could enhance the mechanical behavior of paulownia wood sandwich structures. Double cantilever beam(DCB) tests and bending analysis with finite element method were carried out. The improvement from the composite columns gave little contribution to bending behavior, but significant contribution to interfacial properties.


Sign in / Sign up

Export Citation Format

Share Document