scholarly journals Instantaneous and cycle optimization of fuel usage on a dual fuel vehicle leveraging gasoline and natural gas

Author(s):  
Carrie M Hall ◽  
Michael Pamminger ◽  
James Sevik ◽  
Thomas Wallner

Recent increases in natural gas supply have led to a desire to leverage this fuel in the transportation sector. Dual fuel engines provide a platform on which to use natural gas efficiently; these engines, however, require new hardware and new control strategies to properly utilize two fuels simultaneously. This paper explores the impact of implementing dual fuel capabilities on a sedan and demonstrates that a dual fuel E10 and compressed natural gas engine is able to improve the average engine efficiency by up to 6.5% compared to a single fuel engine on standard drive cycles. An optimal control technique is also developed, and the proposed approach allows factors including fuel cost and fuel availability to be taken into account. Optimization at each time instant is investigated and contrasted with optimization over the entire cycle. Cycle optimization is shown to have particular value for cases in which the level in one fuel tank is low.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8001
Author(s):  
Mirosław Karczewski ◽  
Marcin Wieczorek

Problems such as global warming and rising oil prices are driving the implementation of ideas to reduce liquid fuel consumption and greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties that allow the reduction of CO2 (Carbon Dioxide) emissions during combustion. Solutions are being implemented that allow for the use of natural gas to means of transport, namely in trucks of various categories and intended use. These installations are used in new vehicles, but also in the form of conversion for used cars, usually several years old. The article presents the results of tests of an engine from a used semi-trailer truck with a mileage of approx. 800 thousand km, with the compressed natural gas supply system installed. This installation (hardware and software), depending on the engine operating conditions, enables the replacement of up to 80% of diesel (base fuel) with natural gas. The impact of changing the fuel supply method on the traction characteristics calculated with the use of external characteristics of both conventional and dual-fuel mode was assessed. The emissions of exhaust gas components were also determined under the conditions of the UNECE Regulation No. 49. The test results confirm that compared to conventional fueling, dual fueling allows for a significant reduction in CO2 emissions, even in a used vehicle with high mileage. The use of a non-factory installation did not significantly affect the traction properties of the vehicle, and engine wear is of greater importance in this case (comparison with factory data). The work is a valuable supplement to the results of the research in which the impact of the use of a non-factory CNG (Compressed Natural Gas) supply system on the performance of a semi-trailer truck unit equipped with such an installation was assessed compared to a semi-trailer truck unit powered in a classic way with diesel fuel.


Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 118957
Author(s):  
Hassan Sadah Muhssen ◽  
Siti Ujila Masuri ◽  
Barkawi Bin Sahari ◽  
Abdul Aziz Hairuddin

Author(s):  
Hongsheng Guo ◽  
Brian Liko ◽  
W. Stuart Neill

As an inexpensive and low carbon fuel, the combustion of natural gas reduces fuel cost and generates less carbon dioxide emissions than diesel and gasoline. Natural gas is also a clean fuel that generates less particulate matter emissions than diesel during combustion. Replacing diesel by natural gas in internal combustion engines is of great interest for industries. Dual fuel combustion is an efficient way to apply natural gas in internal combustion engines. An issue that to a certain extent offsets the advantage of lower carbon dioxide emissions in natural gas–diesel dual fuel engines is the higher methane emissions and low engine efficiency at low load conditions. In order to seek strategies to improve the performance of dual fuel engines at low load conditions, an experimental investigation was conducted to investigate the effect of diesel injection split on combustion and emissions performance of a heavy duty natural gas–diesel dual fuel engine at a low load. The operating conditions, such as engine speed, load, intake temperature and pressure, were well controlled during the experiment. The effects of diesel injection split ratio and timings were investigated. The engine efficiency and emissions data, including particulate matter, nitric oxides, carbon monoxide and methane were measured and analyzed. The results show that diesel injection split significantly reduced the peak pressure rise rate. As a result, diesel injection split enabled the engine to operate at a more optimal condition at which engine efficiency and methane emissions could be significantly improved compared to single diesel injection.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4307
Author(s):  
Roberta De Robbio ◽  
Maria Cristina Cameretti ◽  
Ezio Mancaruso ◽  
Raffaele Tuccillo ◽  
Bianca Maria Vaglieco

Dual fuel engines induce benefits in terms of pollutant emissions of PM and NOx together with carbon dioxide reduction and being powered by natural gas (mainly methane) characterized by a low C/H ratio. Therefore, using natural gas (NG) in diesel engines can be a viable solution to reevaluate this type of engine and to prevent its disappearance from the automotive market, as it is a well-established technology in both energy and transportation fields. It is characterized by high performance and reliability. Nevertheless, further improvements are needed in terms of the optimization of combustion development, a more efficient oxidation, and a more efficient exploitation of gaseous fuel energy. To this aim, in this work, a CFD numerical methodology is described to simulate the processes that characterize combustion in a light-duty diesel engine in dual fuel mode by analyzing the effects of the changes in engine speed on the interaction between fluid-dynamics and chemistry as well as when the diesel/natural gas ratio changes at constant injected diesel amount. With the aid of experimental data obtained at the engine test bench on an optically accessible research engine, models of a 3D code, i.e., KIVA-3V, were validated. The ability to view images of OH distribution inside the cylinder allowed us to better model the complex combustion phenomenon of two fuels with very different burning characteristics. The numerical results also defined the importance of this free radical that characterizes the areas with the greatest combustion activity.


2021 ◽  
pp. 1-39
Author(s):  
Akash Chandrabhan Chandekar ◽  
Sushmita Deka ◽  
Biplab K. Debnath ◽  
Ramesh Babu Pallekonda

Abstract The persistent efforts among the researchers are being done to reduce emissions by the exploration of different alternative fuels. The application of alternative fuel is also found to influence engine vibration. The present study explores the potential connection between the change of the engine operating parameters and the engine vibration pattern. The objective is to analyse the effect of alternative fuel on engine vibration and performance. The experiments are performed on two different engines of single cylinder and twin-cylinder variants at the load range of 0 to 34Nm, with steps of 6.8Nm and at the constant speed of 1500rpm. The single cylinder engine, fuelled with only diesel mode, is tested at two compression ratios of 16.5 and 17.5. While, the twin-cylinder engine with a constant compression ratio of 16.5, is tested at both diesel unifuel and diesel-compressed natural gas dual-fuel modes. Further, in dual-fuel mode, tests are conducted with compressed natural gas substitutions of 40%, 60% and 80% for given loads and speed. The engine vibration signatures are measured in terms of root mean square acceleration, representing the amplitude of vibration. The combustion parameters considered are cylinder pressure, rate of pressure rise, heat release rate and ignition delay. At higher loads, the vibration amplitude increases along with the cylinder pressure. The maximum peak cylinder pressure of 95bar is found in the case of the single cylinder engine at the highest load condition that also produced a peak vibration of 3219m/s2.


Sign in / Sign up

Export Citation Format

Share Document