Evaluation of control-oriented flame propagation models for production control of a spark-assisted compression ignition engine

Author(s):  
Dennis Robertson ◽  
Robert Prucka

The drive to improve internal combustion engines has led to efficiency objectives that exceed the capability of conventional combustion strategies. As a result, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and degrees of freedom to the combustion process. Spark-assisted compression ignition (SACI) is an efficient production-viable advanced combustion strategy characterized by spark-ignited flame propagation that triggers autoignition in the remaining unburned gas. Modeling this complex combustion process for control demands a careful selection of model structure to maximize predictive accuracy within computational constraints. This work comprehensively evaluates a physics-based and a data-driven model. The physics-based model produces a burn duration by computing laminar flame speed as a function of test point conditions. The crank-angle domain is intentionally excluded to reduce computational expense. The data-driven model is an artificial neural network (ANN). The candidate models are compared to a one-dimensional engine model validated to experimental SACI engine data. Though both models capture the trends in burn rates, the ANN model has a root-mean square error (RMSE) of 1.4 CAD, significantly lower than the 10.4 CAD RMSE of the physics-based model. The exclusion of the crank-angle domain results in insufficient detail for the physics-based model, while the ANN can tolerate this exclusion.

2008 ◽  
Vol 132 (1) ◽  
pp. 3-16
Author(s):  
Jerzy MERKISZ ◽  
Marek WALIGÓRSKI

The article concerns the possibilities of use of the method being able to assess of the combustion process and its lack in internal combustion engines of railway traction vehicles, that bases on the use of vibration signal parameters. The paper includes the results of research conducted on the engine test bench with a single cylinder research and compression-ignition engine with direct injection, and tests for the engine of a diesel locomotive in the exploitation condition. Possibility of the vibration signal estimators application to the assessment of a combustion process lack in an internal combustion engine and a high reliability of combustion process diagnostics basing on the above method have been proved.


2015 ◽  
Vol 813-814 ◽  
pp. 866-873
Author(s):  
Sindhu Ravichettu ◽  
G. Amba Prasad Rao ◽  
K. Madhu Murthy

The aim of this research is to develop a mathematical model of a compression ignition engine using cylinder-by-cylinder model approach to predict the performances; indicated work, indicated torque, in-cylinder pressures and temperatures and heat release rates. The method used in the study is based on ideal diesel cycle and is modified by the numerical formulations which affect the performance of the engine. The model consists of a set of tuning parameters such as engine geometries, EGR fractions, boost pressures, injection timings, air/fuel ratio, etc. It is developed in Simulink environment to promote modularity. A single-zone combustion model is developed and implemented for the combustion process which accounts for ignition delay, heat release. Derivations from slider-crank mechanism are involved to compute the instantaneous volume, area and stroke at any given crank angle. The results of the simulation model have been validated with experimental results with a close match between them.


2020 ◽  
pp. 146808742093455
Author(s):  
Dennis Robertson ◽  
Robert Prucka

The drive to improve performance and efficiency of internal combustion engines has greatly expanded the degrees of freedom of engine systems. As efficiency objectives exceed the capability of traditional combustion strategies, advanced combustion modes are more attractive for production. These advanced combustion strategies typically add sensors, actuators, and degrees of freedom to the combustion process itself. Spark-assisted compression ignition is an efficient production-viable advanced combustion mode characterized by a spark-ignited flame propagation that triggers autoignition in the remaining unburned gas. This research focuses on autoignition modeling for spark-assisted compression ignition combustion phasing control. This work comprehensively evaluates several autoignition model structures and identifies the real-time production control implications of each. The candidate models include four ignition delay correlations, an ignition delay lookup, three polynomial regressions, and an artificial neural network. All are computationally feasible using production controllers, but the artificial neural network model represents autoignition phasing significantly better than the other options evaluated. The polynomial regressions were similar in error and exceeded the accuracy of ignition delay models. The low performance of the induction time integral–based models stems primarily from the exclusion of low-temperature heat release. The regression models are also exercised on an experimental engine dataset to identify the impact of engine phenomenon such as charge stratification on the performance of each model structure. The trends in the model performance as well as the magnitude of the error were similar when evaluated on both spark-assisted compression ignition simulation data and homogeneous charge compression ignition experimental data.


2010 ◽  
Vol 141 (2) ◽  
pp. 33-39
Author(s):  
Sławomir LUFT

For many years in the Department of Automobiles and Internal Combustion Engines in Technical University of Radom there are carried out investigations on dual-fuel compression ignition engine in which the ignition is initiated by a pilot diesel oil dose and the applied main fuels have properties similar to those applied in spark ignition engines. The tested fuels were methanol, ethanol, LPG and natural gas. Analysis of the obtained results allowed to make some generalizations and to determine advantages as well as problems which should be solved for higher efficiency, power and durability. The paper will present information on efficiency, power, toxic exhaust emission and chosen parameters of combustion process of a dual-fuel compression ignition engine as well as on a difficult to control – knock combustion which may result in lower engine durability and piston crank mechanism failure.


2019 ◽  
Vol 26 (3) ◽  
pp. 138-146
Author(s):  
Ireneusz Pielecha ◽  
Jerzy Merkisz

Abstract Modern solutions used in compression-ignition internal combustion engines are quite similar to each other. The use of high-pressure, direct fuel injection results in high combustion rates with controlled exhaust emissions. One of the combustion system quality criteria is to obtain adequately high thermodynamic indicators of the combustion process, which are obtained through, among others, the right combustion chamber geometry. Its shape influences the fuel atomization process, turbulence of fuel dose, evaporation and the combustion process. Optimizing the combustion chamber shape is one of the decisive factors proving the correct execution of the combustion process. This article presents the methodology of choosing the combustion chamber shape (changes of three selected combustion chamber dimensions) by using the optimization methods. Generating multidimensional data while maintaining the correlation structure was performed by using the Latin hypercube method. Chamber optimization was carried out by using the Nelder-Mead method. The combustion chamber shape was optimized for three engine load values (determined by the average indicated pressure) at selected engine operating conditions. The presented method of engine combustion chamber optimization can be used in low and high speed diesel propulsion engines (especially in maritime transport applications).


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2936 ◽  
Author(s):  
Hua Tian ◽  
Jingchen Cui ◽  
Tianhao Yang ◽  
Yao Fu ◽  
Jiangping Tian ◽  
...  

Low-temperature combustions (LTCs), such as homogeneous charge compression ignition (HCCI), could achieve high thermal efficiency and low engine emissions by combining the advantages of spark-ignited (SI) engines and compression-ignited (CI) engines. Robust control of the ignition timing, however, still remains a hurdle to practical use. A novel technology of jet-controlled compression ignition (JCCI) was proposed to solve the issue. JCCI combustion phasing was controlled by hot jet formed from pre-chamber spark-ignited combustion. Experiments were done on a modified high-speed marine engine for JCCI characteristics research. The JCCI principle was verified by operating the engine individually in the mode of JCCI and in the mode of no pre-chamber jet under low- and medium-load working conditions. Effects of pre-chamber spark timing and intake charge temperature on JCCI process were tested. It was proven that the combustion phasing of the JCCI engine was closely related to the pre-chamber spark timing. A 20 °C temperature change of intake charge only caused a 2° crank angle change of the start of combustion. Extremely low nitrogen oxides (NOx) emission was achieved by JCCI combustion while keeping high thermal efficiency. The JCCI could be a promising technology for dual-fuel marine engines.


2014 ◽  
Vol 18 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Meng Zhang ◽  
Jinhua Wang ◽  
Zuohua Huang ◽  
Norimasa Iida

The premixed flame speed under a small four stock homogeneous charge compression ignition engine, fueled with dimethyl ether, was investigated. The effects of intermediate species, initial temperature, initial pressure, exhaust gas recirculation, and equivalence ratio were studied and compared to the baseline condition. Results show that, under all conditions, the flame speeds calculated without intermediates are higher than those which took the intermediates in consideration. Flame speeds increase with the increase of crank angle. The increase rate is divided into three regions and the increase rate is obviously high in the event of low temperature heat release. Initial temperature and pressure only affect the crank angle of flame speed, but have little influence on its value. Equivalence ratio and exhaust gas recirculation ratio do not only distinctly decrease the flame speed, but also advance the crank angle of flame speed.


Author(s):  
Swami Nathan Subramanian ◽  
Stephen Ciatti

The conventional combustion processes of Spark Ignition (SI) and Compression Ignition (CI) have their respective merits and demerits. Internal combustion engines use certain fuels to utilize those conventional combustion technologies. High octane fuels are required to operate the engine in SI mode, while high cetane fuels are preferable for CI mode of operation. Those conventional combustion techniques struggle to meet the current emissions norms while retaining high efficiency. In particular, oxides of nitrogen (NOx) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines, and conventional gasoline operated SI engines are not fuel efficient. Advanced combustion concepts have shown the potential to combine fuel efficiency and improved emissions performance. Low Temperature Combustion (LTC) offers reduced NOx and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NOx emissions is dependent on achieving optimal combustion phasing. Variations in injection pressures, injection schemes and Exhaust Gas Recirculation (EGR) are studied with low octane gasoline LTC. Reductions in emissions are a function of combustion phasing and local equivalence ratio. Engine speed, load, EGR quantity, compression ratio and fuel octane number are all factors that influence combustion phasing. Low cetane fuels have shown comparable diesel efficiencies with low NOx emissions at reasonably high power densities.


2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Corneliu Cofaru ◽  
Mihaela Virginia Popescu

The paper presents the research designed to develop a HCCI (Homogenous Charge Compression Ignition) engine starting from a spark ignition engine platform. The chosen test engine was a single cylinder, four strokes provided with a carburettor. The results of experimental research data obtained on this version were used as a baseline for the next phase of the research. In order to obtain the HCCI configuration, the engine was modified, as follows: the compression ratio was increased from 9.7 to 11.5 to ensure that the air – fuel mixture auto-ignite and to improve the engine efficiency; the carburettor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass; the valves shape were modified to provide a safety engine operation by ensuring the provision of sufficient clearance beetween the valve and the piston; the exchange gas system was changed from fixed timing to variable valve timing to have the possibilities of modification of quantities of trapped burnt gases. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.


Sign in / Sign up

Export Citation Format

Share Document