Modeling the abrasive wear behavior of in-situ synthesized magnesium RZ5/TiB2 metal matrix composites

Author(s):  
Arabinda Meher ◽  
Manas Mohan Mahapatra ◽  
Priyaranjan Samal ◽  
Pandu R. Vundavilli

In the present study, the statistical analysis on tribological behavior of RZ5/TiB2 magnesium-based metal matrix composites is carried out using Taguchi design and analysis of variance (ANOVA) technique. Taguchi analysis using signal-to-noise ratio indicates that the sliding distance and wt.% TiB2 are the most significant factors in evaluating weight loss and coefficient of friction, respectively. The regression equation is formulated utilizing the ANOVA technique to study the output responses based on the input abrasive wear test experimental results. The regression equation is validated through a comprehensive study taking a series of abrasive wear tests and indicates the percentage deviation of regression modeling is in the range of ± 10%. The individual and combined effect of wear parameters on tribological behavior are investigated through the main effect plots and response surface plots. The micrograph of the worn surface of RZ5/TiB2 composites is studied using field emission scanning electron microscope (FESEM), indicating the formation of an oxide layer on the worn surface.

2018 ◽  
Vol 70 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
Saravanan C. ◽  
Subramanian K. ◽  
Anandakrishnan V. ◽  
Sathish S.

Purpose Aluminium is the most preferred material in engineering structural components because of its excellent properties. Furthermore, the properties of aluminium may be enhanced through metal matrix composites and an in-depth investigation on the evolved properties is needed in view of metallurgical, mechanical and tribological aspects. The purpose of this study is to explore the effect of TiC addition on the tribological behavior of aluminium composites. Design/methodology/approach Aluminium metal matrix composites at different weight percentage of titanium carbide were produced through powder metallurgy. Produced composites were subjected to sliding wear test under dry condition through Taguchi’s L9 orthogonal design. Findings Optimal process condition to achieve the minimum wear rate was identified though the main effect plot. Sliding velocity was identified as the most dominating factor in the wear resistance. Practical implications The production of components with improved properties is promoted efficiently and economically by synthesizing the composite via powder metallurgy. Originality/value Though the investigations on the wear behavior of aluminium composites are analyzed, reinforcement types and the mode of fabrication have their significance in the metallurgical and mechanical properties. Thus, the produced component needs an in-detail study on the property evolution.


Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present work is to investigate vickers hardness, wear behavior as well as to perform optimization of wear data for pure Al and Al-Al2O3-TiO2 hybrid metal matrix composites. The hybrid composite (Al-Al2O3-TiO2) was prepared by mechanical stir casting with equal proportion of reinforcement (2.5, 5.0, 7.5 and 10 wt.%). Vickers hardness, wear behavior and its optimization using ANOVA as well as TOPSIS along with the microstructure of the worn surface of prepared sample has been investigated. Vickers hardness increases with an increase in weight percentage of reinforcements. Wear test was carried out under dry sliding condition by pin-on-disc wear machine according to the ASTM G99-95a standard. Wear properties of the sample have been obtained at different percentages of reinforcement. Wear resistance of the hybrid composite increases with the variation of percentage of titanium oxide particles due to its lubricating properties. ANOVA shows that the reinforcements and load have different effect on samples wear rate. TOPSIS analysis shows rank of the sample according to its wear rate. Worn surface morphology was investigated and it showed deep grooves, more debris, delamination and rough surface in pure Al sample as compared to the high percentage of reinforced hybrid metal matrix composites.


2000 ◽  
Vol 183-187 ◽  
pp. 1267-1272 ◽  
Author(s):  
J.I. Song ◽  
Sung In Bae ◽  
Kyung Chun Ham ◽  
Kyung Seop Han

2013 ◽  
Vol 20 (4) ◽  
pp. 311-317 ◽  
Author(s):  
Rajaneesh N. Marigoudar ◽  
Kanakuppi Sadashivappa

AbstractMetal matrix composites (MMCs) are characterized by high specific strength and stiffness. Light metal alloys are reinforced with hard ceramic particles, which show better properties compared to monolithic alloys. ZA43 MMCs are fabricated by stir casting technique by reinforcing preheated silicon carbide particles (SiCp). Wear behavior of ZA43 MMCs is evaluated by conducting dry sliding wear test using a pin-on-disc wear test rig. The tests were conducted for varying loads of 9.81, 19.62, 29.43 and 39.24 N and sliding disc speeds of 2.12, 2.93, 3.66, 4.39 and 5.13 m/s at constant time of 15 min. The results reveal that the wear resistance property of the composite increases as the percentage of reinforcement increases. It was also observed that volume loss increases with increasing applied load and sliding speed. The tested samples were examined and analyzed by taking scanning electron micrographs. The dominating wear mechanisms observed were delamination, scissoring of the abrasive particle, pullout of particle, smearing of the surface and abrasion.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3536
Author(s):  
Amit Patil ◽  
Ganesh Walunj ◽  
Furkan Ozdemir ◽  
Rajeev Kumar Gupta ◽  
Tushar Borkar

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with exceptional mechanical, thermal, chemical, and electrical properties are enticing reinforcements for fabricating lightweight, high-strength, and wear-resistant metal matrix composites with superior mechanical and tribological performance. Nickel–carbon nanotube composite (Ni-CNT) and nickel–graphene nanoplatelet composite (Ni-GNP) were fabricated via mechanical milling followed by the spark plasma sintering (SPS) technique. The Ni-CNT/GNP composites with varying reinforcement concentrations (0.5, 2, and 5 wt%) were ball milled for twelve hours to explore the effect of reinforcement concentration and its dispersion in the nickel microstructure. The effect of varying CNT/GNP concentration on the microhardness and the tribological behavior was investigated and compared with SPS processed monolithic nickel. Ball-on-disc tribological tests were performed to determine the effect of different structural morphologies of CNTs and GNPs on the wear performance and coefficient of friction of these composites. Experimental results indicate considerable grain refinement and improvement in the microhardness of these composites after the addition of CNTs/GNPs in the nickel matrix. In addition, the CNTs and GNPs were effective in forming a lubricant layer, enhancing the wear resistance and lowering the coefficient of friction during the sliding wear test, in contrast to the pure nickel counterpart. Pure nickel demonstrated the highest CoF of ~0.9, Ni-0.5CNT and Ni-0.5GNP exhibited a CoF of ~0.8, whereas the lowest CoF of ~0.2 was observed for Ni-2CNT and Ni-5GNP composites. It was also observed that the uncertainty of wear resistance and CoF in both the CNT/GNP-reinforced composites increased when loaded with higher reinforcement concentrations. The wear surface was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis to elucidate the wear mechanism in these composites.


Sign in / Sign up

Export Citation Format

Share Document