Analysis of the aerodynamic pressure effect on the fatigue strength of the carbody of high-speed trains passing by each other in a tunnel

Author(s):  
Yaohui Lu ◽  
Dewen Zhang ◽  
Heyan Zheng ◽  
Chuan Lu ◽  
Tianli Chen ◽  
...  

When two high-speed trains pass through a tunnel, the aerodynamic changes are more complex and drastic than in open air owing to the interference of the tunnel wall and the entry effect. The impact on the carbody fatigue strength is very significant in the fatigue reliability design of the carbody. In this paper, the sequential coupling method was used for the first time to study the effect of pressure waves on the fatigue strength in a large-scale and complex carbody structure. The computational fluid dynamics method was used to calculate and analyze the aerodynamic pressure wave of the intersection of the trains in a long and short tunnel. A full-scale finite element shell model of the carbody structure was established. Then, the time integration method was used to convert the transient pressure wave into the aerodynamic loads bearing by the side wall of the carbody. The inhomogeneous stress concentrations at the restraint points were eliminated by the inertial release method; moreover, a finite element analysis of the carbody was carried out under the combined aerodynamic and mechanical loads. The Goodman fatigue strength curve of the aluminum alloy carbody was drawn. The influence of the aerodynamic load on the fatigue strength of the vehicle body was analyzed and compared under the entry effect of the short tunnel. The results show that the aerodynamic load of the short tunnel has a significant impact on the fatigue strength of the carbody owing to the train's entry effect. The safety factor of the fatigue strength is 15% less than that of the long tunnel aerodynamic load. In this paper, computational fluid dynamics and finite element method were used to analyze and evaluate the impact of the pressure wave on the fatigue strength of the carbody, which is of great reference value in the structural design of the carbody subjected to complex aerodynamic loads.

2018 ◽  
Vol 13 (3) ◽  
Author(s):  
Antonio Martínez-De la Concha ◽  
Héctor Cifuentes ◽  
Fernando Medina

This paper analyzes the dynamic soil–structure interaction (SSI) of a railway bridge under the load transmitted by high-speed trains using the finite element method (FEM). In this type of bridges, the correct analysis of SSI requires proper modeling of the soil; however, this task is one of the most difficult to achieve with the FEM method. In this study, we explored the influence of SSI on the dynamic properties of the structure and the structure's response to high-speed train traffic using commercial finite element software with direct integration and modal superposition methods. High-speed trains are characterized by the high-speed load model (HSLM) in the Eurocode. We performed sensitivity analyses of the influence of several parameters on the model, such as the size and stiffness of the discretized soil, mesh size, and the influence of the dynamic behavior of the excitation. Based on the results, we make some important and reliable recommendations for building an efficient and simple model that includes SSI. We conducted a dynamic analysis of a full model of a general multispan bridge including the piers, abutments, and soil and identified the impact factors that affected the design of the bridge. The analysis revealed that the methodology we propose allows for a more accurate determination of the dynamic effects of the passage of a train over the bridge, compared to the simpler and more widely used analysis of a directly supported isolated deck, which tends to overestimate the impact factors.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


Author(s):  
Shuguang Yao ◽  
Zhixiang Li ◽  
Wen Ma ◽  
Ping Xu ◽  
Quanwei Che

Coupler rubber buffers are widely used in high-speed trains, to dissipate the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are pre-compressed and then installed into the frame body. This paper specifically focuses on the energy absorption characteristics of the rubber buffers. Firstly, quasi-static compression tests were carried out for one and three pairs of rubber sheets, and the relationship between the energy absorption responses, i.e. Eabn  =  n ×  Eab1, Edissn =  n ×  Ediss1, and Ean =  Ea1, was obtained. Next, a series of quasi-static tests were performed for one pair of rubber sheet to investigate the energy absorption performance with different compression ratios of the rubber buffers. Then, impact tests with five impact velocities were conducted, and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The results of the impact tests showed that with the increase of the impact velocity, the Eab, Ediss, and Ea of the rear buffer increased significantly, but the three responses of the front buffer did not increase much. Finally, the results of the impact tests and quasi-static tests were contrastively analyzed, which showed that with the increase of the stroke, the values of Eab, Ediss, and Ea increased. However, the increasing rates of the impact tests were higher than that of the quasi-static tests. The maximum value of Ea was 68.76% in the impact tests, which was relatively a high value for the vehicle coupler buffer. The energy capacity of the rear buffer for dynamic loading was determined as 22.98 kJ.


2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


2018 ◽  
Vol 225 ◽  
pp. 06011 ◽  
Author(s):  
Ismail Ali Bin Abdul Aziz ◽  
Daing Mohamad Nafiz Bin Daing Idris ◽  
Mohd Hasnun Arif Bin Hassan ◽  
Mohamad Firdaus Bin Basrawi

In high-speed gear drive and power transmission, system impact failure mode always occurs due to the sudden impact and shock loading during the system in running. Therefore, study on the amount of impact energy that can be absorbed by a gear is vital. Impact test equipment has been designed and modelled for the purpose to study the impact energy on gear tooth. This paper mainly focused on Finite Element Analysis (FEA) of impact energy that occurred during simulation involving the impact test equipment modelling. The simulation was conducted using Abaqus software on critical parts of the test equipment to simulate the impact event and generate impact data for analysis. The load cell in the model was assumed to be free fall at a certain height which gives impact load to the test gear. Three different type of material for the test gear were set up in this simulation. Results from the simulation show that each material possesses different impact energy characteristic. Impact energy values increased along with the height of load drop. AISI 1040 were found to be the toughest material at 3.0m drop that could withstand up to 44.87N.m of impact energy. These data will be used to validate data in physical experiments in further study.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ding Youliang ◽  
Wang Gaoxin

Studies on dynamic impact of high-speed trains on long-span bridges are important for the design and evaluation of high-speed railway bridges. The use of the dynamic load factor (DLF) to account for the impact effect has been widely accepted in bridge engineering. Although the field monitoring studies are the most dependable way to study the actual DLF of the bridge, according to previous studies there are few field monitoring data on high-speed railway truss arch bridges. This paper presents an evaluation of DLF based on field monitoring and finite element simulation of Nanjing DaShengGuan Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The DLFs in different members of steel truss arch are measured using monitoring data and simulated using finite element model, respectively. The effects of lane position, number of train carriages, and speed of trains on DLF are further investigated. By using the accumulative probability function of the Generalized Extreme Value Distribution, the probability distribution model of DLF is proposed, based on which the standard value of DLF within 50-year return period is evaluated and compared with different bridge design codes.


Author(s):  
Jonathan Tschepe ◽  
Jörg-Torsten Maaß ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

This paper presents the results of experimental investigations on the aerodynamic drag of roof-mounted insulators for use on low- and high-speed trains. Wind tunnel investigations at different Reynolds numbers in the subcritical, critical, and supercritical flow regime were performed, in addition to investigations using wall-mounted cylinders. Furthermore, the impact of insulator sheds made of flexible material was analyzed. For a better understanding of the aerodynamic behavior of the insulators when mounted on trains, different boundary conditions representing realistic configurations as found on the roof of trains were simulated. From the measured drag, the energy demand to overcome the aerodynamic resistance of different types of insulators was calculated. Depending on the above mentioned boundary conditions, a noticeable contribution of the insulators to the entire train's aerodynamic drag could be observed. With flexible insulator sheds, a further increased air resistance was observed with the onset of fluttering. Similar to the cylinder, the aerodynamic behavior of the insulators depends on the respective Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document