Identification of pursued vehicles based on the guidance law recognition and line-of-sight analysis

Author(s):  
Runle Du ◽  
Jiaqi Liu ◽  
Di Zhou ◽  
Lu Gao

In a scenario where a formation of flight vehicles tries to avoid the interception of a pursuer vehicle, it is very important for the formation to identify which member is being pursued by the pursuer. This paper proposes an identification model, which incorporates guidance parameter confidence measures and line-of-sight correlations to determine the possibility of each member being pursued. With observation data between each member and the pursuer, the equivalent navigation ratio of the guidance law of the pursuer is estimated online. Then, the confidence measure of the navigation ratio estimated by each member is translated into the possibility of each member being pursued. Furthermore, coupling the estimation results of navigation ratio with the line-of-sight information between each member and the pursuer, the pursued vehicle can be identified from the members in the formation. Simulation results prove that under different conditions, the proposed method can accomplish the identification with acceptable accuracy.

2014 ◽  
Vol 598 ◽  
pp. 723-730
Author(s):  
Mohamed Zakaria ◽  
Talaat Ibrahim ◽  
Alaa El Din Sayed Hafez ◽  
Hesham Abdin

Several conditions affect the performance of guidance law like target parameters or delayed line of sight rate. A variable navigation ratio is used to enhance the performance of guidance law. In this paper a Genetic Algorithm is used to formulate different forms of variable gains and measure the miss distance. An optimization process is running to find the minimum miss distance. The average values and standard deviation of miss distance for all genetic algorithm individuals are calculated to measure the performance and robustness of guidance law. Two guidance laws are considered proportional navigation (PN) and differential geometry (DG). The simulation results show that the proportional navigation is superior to differential geometry performance in the presence of delayed line of sight rate.


2021 ◽  
Vol 11 (1) ◽  
pp. 410
Author(s):  
Yu-Hsien Lin ◽  
Yu-Ting Lin ◽  
Yen-Jun Chiu

On the basis of a full-appendage DARPA SUBOFF model (DTRC model 5470), a scale (λ = 0.535) semi-autonomous submarine free-running model (SFRM) was designed for testing its manoeuvrability and stability in the constrained water. Prior to the experimental tests of the SFRM, a six-degree-of-freedom (6-DOF) manoeuvre model with an autopilot system was developed by using logic operations in MATLAB. The SFRM’s attitude and its trim polygon were presented by coping with the changes in mass and trimming moment. By adopting a series of manoeuvring tests in empty tanks, the performances of the SFRM were introduced in cases of three sailing speeds. In addition, the PD controller was established by considering the simulation results of these manoeuvring tests. The optimal control gains with respect to each manoeuvring test can be calculated by using the PID tuner in MATLAB. Two sets of control gains derived from the optimal characteristics parameters were compared in order to decide on the most appropriate PD controller with the line-of-sight (LOS) guidance algorithm for the SFRM in the autopilot simulation. Eventually, the simulated trajectories and course angles of the SFRM would be illustrated in the post-processor based on the Cinema 4D modelling.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 586
Author(s):  
Che-Jui Chang ◽  
Jean-Fu Kiang

Strong flares and coronal mass ejections (CMEs), launched from δ-sunspots, are the most catastrophic energy-releasing events in the solar system. The formations of δ-sunspots and relevant polarity inversion lines (PILs) are crucial for the understanding of flare eruptions and CMEs. In this work, the kink-stable, spot-spot-type δ-sunspots induced by flux emergence are simulated, under different subphotospheric initial conditions of magnetic field strength, radius, twist, and depth. The time evolution of various plasma variables of the δ-sunspots are simulated and compared with the observation data, including magnetic bipolar structures, relevant PILs, and temperature. The simulation results show that magnetic polarities display switchbacks at a certain stage and then split into numerous fragments. The simulated fragmentation phenomenon in some δ-sunspots may provide leads for future observations in the field.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


2011 ◽  
Vol 317-319 ◽  
pp. 727-733
Author(s):  
Shuang Chun Peng ◽  
Liang Pan ◽  
Tian Jiang Hu ◽  
Lin Cheng Shen

A new three-dimensional (3D) nonlinear guidance law is proposed and developed for bank-to-turn (BTT) with motion coupling. First of all, the 3D guidance model is established. In detail, the line-of-sight (LOS) rate model is established with the vector description method, and the kinematics model is divided into three terms of pitching, swerving and coupling, then by using the twist-based method, the LOS direction changing model is built for designing the guidance law with terminal angular constraints. Secondly, the 3D guidance laws are designed with Lyapunov theory, corresponding to no terminal constraints and terminal constraints, respectively. And finally, the simulation results show that the proposed guidance law can effectively satisfy the guidance precision requirements of BTT missile.


2021 ◽  
Vol 108 ◽  
pp. 102488
Author(s):  
Yixin Su ◽  
Lili Wan ◽  
Danhong Zhang ◽  
Fanrong Huang

2008 ◽  
Vol 45 (01) ◽  
pp. 21-27
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo

The paper presents a nonlinear hydrodynamic numerical model with multiple-states proportional-derivative (PD) controllers for simulating the ship's tracking in random sea. By way of the rudder operation, the track-keeping ability of the PD controller on the ship is examined using the line-of-sight (LOS) guidance technique. Furthermore, the roll-reduction function using the rudder control is also included in the PD controller. From the present simulation results, the single-input multiple-output (SIMO) heading/roll PD controller including LOS technique developed here indeed works, either for the roll reduction or for track keeping while the ship is maneuvering in waves.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 709-720 ◽  
Author(s):  
F. Belkhouche ◽  
B. Belkhouche

This paper deals with a method for robot navigation towards a moving goal. The goal maneuvers are not a priori known to the robot. Our method is based on the use of the kinematics equations of the robot and the goal combined with geometrical rules. First a kinematics model for the tracking problem is derived and two strategies are suggested for robot navigation, namely the velocity pursuit guidance law and the deviated pursuit guidance law. It turns out that in both cases, the robot's angular velocity is equal to the line of sight angle rate. Important properties of the navigation strategies are discussed and proven. In the presence of obstacles, two navigation modes are used: the tracking mode, which has a global aspect and the obstacle avoidance mode, which has a local aspect. In the obstacle avoidance mode, a polar diagram combining information about obstacles and directions corresponding to the pursuit is constructed. An extensive simulation study is carried out, where the efficiency of both strategies is illustrated for different scenarios.


2012 ◽  
Vol 433-440 ◽  
pp. 3831-3836
Author(s):  
Yong Tao Zhao ◽  
Yun An Hu

For the case of ship-air missile intercepting the low target beyond visual range by ship-ship coordination, the instruction solution model was presented and an optimal guidance law was designed considering the effect of the curvature of the earth. In the midcourse and terminal guidance segment, the optimal guidance law was designed through applying the concept of the pseudo control variable and the theory of the linear quadratic optimal control. The information of the target was described in the launch coordinates through coordinate transformation to realize the instruction solution for the designed guidance law. The simulation results show that the model of the instruction solution is correct and the designed guidance law is feasible.


Sign in / Sign up

Export Citation Format

Share Document