maneuvering in waves
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
pp. 1-13
Author(s):  
Paul F. White ◽  
Dominic J. Piro ◽  
Bradford G. Knight ◽  
Kevin J. Maki

The maneuvering characteristics of a surface ship play a critical role in the safety of navigation both in port and in an open seaway, and are vital to the overall operational ability of the ship. The vast majority of maneuvering analyses for ships have been performed under the assumption of calm water, yet ships mostly operate in waves. Understanding of maneuvering in waves is limited by the complexity of the problem and the challenges of performing physical experiments and numerical simulations. In this work, a new fast-running method that allows for the study of maneuvering in waves is formulated. The newly formulated approach is categorized as a “hybrid method,” taking its name from the multiple numerical methods and force models used to predict the total hydrodynamic force acting on the vessel maneuvering in waves. The framework presented here uses a combination of Computational Fluid Dynamics, a linear time-domain boundary element method, and a propeller-force model for efficient computation of the total hydrodynamic force.


Author(s):  
Chengqian Ma ◽  
Ning Ma ◽  
Xiechong Gu ◽  
Peiyuan Feng

Abstract The theoretical method, or named the potential flow method, is most widely used in the research of maneuvering in waves. However, this approach used in previous studies is based on the assumption that maneuvering hydrodynamic derivatives in waves are the same as those in calm water. However, this assumption can be inaccurate, which makes the simulations inexact sometimes. Meanwhile, there are few experiments performed to investigate the hydrodynamic derivatives in waves considering the complexities of the experimental setup and data processing. There is even no systematic numerical simulation in this field. Considering the importance of the wave effect on the hydrodynamic derivatives and the advantages of the CFD method, in this study, the numerical simulations of the PMM tests on a containership S175 in regular waves are performed for the first time. The hydrodynamic derivatives in waves are obtained by simulations in the following waves, to be specific, the surf-riding condition. The surf-riding condition is chosen for separating the wave-induced component easily and researching the reason for the broaching-to phenomenon. The simulation results are validated by experimental data with satisfactory accuracy, which indicates the effectiveness of the numerical setup. The results reveal that the wave has a significant effect on hydrodynamic derivatives. The detailed changing trends and simulation methods of all hydrodynamic derivatives are proposed in this paper. Moreover, the course stability in waves is evaluated by the hydrodynamic derivatives in waves, which verifies the reason for the occurrence of the broaching-to phenomenon.


Author(s):  
Chengqian Ma ◽  
Ning Ma ◽  
Xiechong Gu

Abstract Maneuvering in waves is a complex and critical issue that confuses researchers for the last several decades. Among the existing methods for predicting the maneuverability in waves, the widely-used mathematical model approach (MMG model) is considered to be efficient and accurate in large wavelength and small wave steepness conditions. However, based on the assumption that the maneuvering forces in waves are the same as those in calm water, the wave effect on the hydrodynamic derivatives is neglected in most mathematical model approaches. According to the previous theoretical analysis and experimental data, this assumption is flawed. Therefore, several experiments and some numerical simulations have conducted to research the wave effect on hydrodynamic derivatives. In the present study, oblique towing tests and pure yaw tests will be simulated using the state-of-the-art CFD techniques to obtain the linear hydrodynamic derivatives in waves. The simulation cases in the present study are set according to previous PMM tests of S175 containership in surf-riding conditions. And the simulation results are in good agreement with experimental ones. Based on that, the wave effect on hydrodynamic derivatives is obtained and some discussions are made. Finally, the course stability of the containership on the different relative position of the wave are calculated to analyze the preliminary reason for the broaching-to phenomenon.


2020 ◽  
Vol 8 (6) ◽  
pp. 392 ◽  
Author(s):  
Zhitian Xie ◽  
Jeffrey Falzarano ◽  
Hao Wang

Maneuvering in waves is a hydrodynamic phenomenon that involves both seakeeping and maneuvering problems. The environmental loads, such as waves, wind, and current, have a significant impact on a maneuvering vessel, which makes it more complex than maneuvering in calm water. Wave effects are perhaps the most important factor amongst these environmental loads. In this research, a framework has been developed that simultaneously incorporates the maneuvering and seakeeping aspects that includes the hydrodynamics effects corresponding to both. To numerically evaluate the second-order wave loads in the seakeeping problem, a derivation has been presented with a discussion and the Neumann-Kelvin linearization has been applied to consider the wave drift damping effect. The maneuvering evaluations of the KVLCC (KRISO Very Large Crude Carrier) and KCS (KRISO Container Ship) models in calm water and waves have been conducted and compared with the model tests. Through the comparison with the experimental results, this framework had been proven to provide a convincing numerical prediction of the horizontal motions for a maneuvering vessel in waves. The current framework can be extended and contribute to the IMO (International Maritime Organization) standards for determining the minimum propulsion power to maintain the maneuverability of vessels in adverse conditions.


Author(s):  
Jochen Schoop-Zipfel ◽  
Moustafa Abdel-Maksoud

The forces acting on a maneuvering ship are determined with the in-house potential code panMARE. For slender ships with salient hull features, the forces and moments can be captured by properly treating the shed vorticity. For blunt ships it is not possible to directly determine the strength of the vorticity and the position where it leaves the hull. Therefore, it is easier and not less accurate to account for separation forces via semi-empirical formulae. These corrections are based on slender body theory or extensive RANS computations. The mass forces can be determined directly by potential theory. Forces and moments due to rudder and propeller are calculated using state-of-the-art procedures. Arbitrary maneuvers can be simulated by using the equations of motion. With the applied corrections a satisfactory agreement with model test results can be obtained. Wave excitation forces can be introduced to incorporate the influence of sea states. These forces are determined with strip theory. While the forces agree well with measured data, a deviation can be observed in the motions.


2008 ◽  
Vol 45 (01) ◽  
pp. 21-27
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo

The paper presents a nonlinear hydrodynamic numerical model with multiple-states proportional-derivative (PD) controllers for simulating the ship's tracking in random sea. By way of the rudder operation, the track-keeping ability of the PD controller on the ship is examined using the line-of-sight (LOS) guidance technique. Furthermore, the roll-reduction function using the rudder control is also included in the PD controller. From the present simulation results, the single-input multiple-output (SIMO) heading/roll PD controller including LOS technique developed here indeed works, either for the roll reduction or for track keeping while the ship is maneuvering in waves.


Sign in / Sign up

Export Citation Format

Share Document